The Expression of Hemagglutinin by a Recombinant Newcastle Disease Virus Causes Structural Changes and Alters Innate Immune Sensing.

Autor: Ingrao F; Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium., Duchatel V; Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium., Rodil IF; Institut de Biologie et Médecine Moléculaire, Université Libre de Bruxelles, 6041 Gosselies, Belgium., Steensels M; Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium., Verleysen E; Service of Trace Elements and Nanomaterials, Sciensano, 1180 Brussels, Belgium., Mast J; Service of Trace Elements and Nanomaterials, Sciensano, 1180 Brussels, Belgium., Lambrecht B; Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium.
Jazyk: angličtina
Zdroj: Vaccines [Vaccines (Basel)] 2021 Jul 07; Vol. 9 (7). Date of Electronic Publication: 2021 Jul 07.
DOI: 10.3390/vaccines9070758
Abstrakt: Recombinant Newcastle disease viruses (rNDV) have been used as bivalent vectors for vaccination against multiple economically important avian pathogens. NDV-vectored vaccines expressing the immunogenic H5 hemagglutinin (rNDV-H5) are considered attractive candidates to protect poultry from both highly pathogenic avian influenza (HPAI) and Newcastle disease (ND). However, the impact of the insertion of a recombinant protein, such as H5, on the biological characteristics of the parental NDV strain has been little investigated to date. The present study compared a rNDV-H5 vaccine and its parental NDV LaSota strain in terms of their structural and functional characteristics, as well as their recognition by the innate immune sensors. Structural analysis of the rNDV-H5 demonstrated a decreased number of fusion (F) and a higher number of hemagglutinin-neuraminidase (HN) glycoproteins compared to NDV LaSota. These structural differences were accompanied by increased hemagglutinating and neuraminidase activities of rNDV-H5. During in vitro rNDV-H5 infection, increased mRNA expression of TLR3, TLR7, MDA5, and LGP2 was observed, suggesting that the recombinant virus is recognized differently by sensors of innate immunity when compared with the parental NDV LaSota. Given the growing interest in using NDV as a vector against human and animal diseases, these data highlight the importance of thoroughly understanding the recombinant vaccines' structural organization, functional characteristics, and elicited immune responses.
Databáze: MEDLINE