Microbial eukaryote assemblages and potential novel diversity in four tropical East African Great Lakes.

Autor: Fermani P; Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina., Metz S; University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France., Balagué V; Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain., Descy JP; Unit of Chemical Oceanography, University of Liège, Quartier Agora Allée du six Août 19 4000 Liège 1, Belgium., Morana C; Unit of Chemical Oceanography, University of Liège, Quartier Agora Allée du six Août 19 4000 Liège 1, Belgium., Logares R; Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain., Massana R; Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain., Sarmento H; Departamento de Hidrobiologia (DHb), Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235 - Cx. Postal 676, CEP 13565-905 - São Carlos/SP, Brazil.
Jazyk: angličtina
Zdroj: FEMS microbiology ecology [FEMS Microbiol Ecol] 2021 Aug 17; Vol. 97 (9).
DOI: 10.1093/femsec/fiab114
Abstrakt: East African Great Lakes are old and unique natural resources heavily utilized by their bordering countries. In those lakes, ecosystem functioning is dominated by pelagic processes, where microorganisms are key components; however, protistan diversity is barely known. We investigated the community composition of small eukaryotes (<10 µm) in surface waters of four African Lakes (Kivu, Edward, Albert and Victoria) by sequencing the 18S rRNA gene. Moreover, in the meromictic Lake Kivu, two stations were vertically studied. We found high protistan diversity distributed in 779 operational taxonomic units (OTUs), spanning in 11 high-rank lineages, being Alveolata (31%), Opisthokonta (20%) and Stramenopiles (17%) the most represented supergroups. Surface protistan assemblages were associated with conductivity and productivity gradients, whereas depth had a strong effect on protistan community in Kivu, with higher contribution of heterotrophic organisms. Approximately 40% of OTUs had low similarity (<90%) with reported sequences in public databases; these were mostly coming from deep anoxic waters of Kivu, suggesting a high extent of novel diversity. We also detected several taxa so far considered exclusive of marine ecosystems. Our results unveiled a complex and largely undescribed protistan community, in which several lineages have adapted to different niches after crossing the salinity boundary.
(© The Author(s) 2021. Published by Oxford University Press on behalf of FEMS. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
Databáze: MEDLINE