Structural Flexibility in Metal-Organic Cages.

Autor: Martín Díaz AE; Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom., Lewis JEM; Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom.
Jazyk: angličtina
Zdroj: Frontiers in chemistry [Front Chem] 2021 Jun 17; Vol. 9, pp. 706462. Date of Electronic Publication: 2021 Jun 17 (Print Publication: 2021).
DOI: 10.3389/fchem.2021.706462
Abstrakt: Metal-organic cages (MOCs) have emerged as a diverse class of molecular hosts with potential utility across a vast spectrum of applications. With advances in single-crystal X-ray diffraction and economic methods of computational structure optimisation, cavity sizes can be readily determined. In combination with a chemist's intuition, educated guesses about the likelihood of particular guests being bound within these porous structures can be made. Whilst practically very useful, simple rules-of-thumb, such as Rebek's 55% rule, fail to take into account structural flexibility inherent to MOCs that can allow hosts to significantly adapt their internal cavity. An often unappreciated facet of MOC structures is that, even though relatively rigid building blocks may be employed, conformational freedom can enable large structural changes. If it could be exploited, this flexibility might lead to behavior analogous to the induced-fit of substrates within the active sites of enzymes. To this end, in-roads have already been made to prepare MOCs incorporating ligands with large degrees of conformational freedom. Whilst this may make the constitution of MOCs harder to predict, it has the potential to lead to highly sophisticated and functional synthetic hosts.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2021 Martín Díaz and Lewis.)
Databáze: MEDLINE