Highly Efficient Uniaxial In-Plane Stretching of a 2D Material via Ion Insertion.
Autor: | Muscher PK; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.; Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Rehn DA; Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA., Sood A; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.; Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Lim K; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Luo D; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.; Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Shen X; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Zajac M; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA., Lu F; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA., Mehta A; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Li Y; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.; Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Wang X; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Reed EJ; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA., Chueh WC; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.; Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Lindenberg AM; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.; Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2021 Sep; Vol. 33 (37), pp. e2101875. Date of Electronic Publication: 2021 Jul 31. |
DOI: | 10.1002/adma.202101875 |
Abstrakt: | On-chip dynamic strain engineering requires efficient micro-actuators that can generate large in-plane strains. Inorganic electrochemical actuators are unique in that they are driven by low voltages (≈1 V) and produce considerable strains (≈1%). However, actuation speed and efficiency are limited by mass transport of ions. Minimizing the number of ions required to actuate is thus key to enabling useful "straintronic" devices. Here, it is shown that the electrochemical intercalation of exceptionally few lithium ions into WTe (© 2021 Wiley-VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: |