Novel dual-flow perfusion bioreactor for in vitro pre-screening of nanoparticles delivery: design, characterization and testing.

Autor: Lombardo ME; Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128, Palermo, Italy. mariaelena.lombardo01@unipa.it.; Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, Canada. mariaelena.lombardo01@unipa.it., Carfì Pavia F; Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128, Palermo, Italy.; Consorzio Universitario di Caltanissetta, Corso Vittorio Emanuele 92, 93100, Caltanissetta, Italy., Craparo EF; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze building 16, 90128, Palermo, Italy., Capuana E; Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128, Palermo, Italy., Cavallaro G; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze building 16, 90128, Palermo, Italy.; ATeN center, University of Palermo, Viale delle Scienze building 18, 90128, Palermo, Italy., Brucato V; Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128, Palermo, Italy., La Carrubba V; Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze building 8, 90128, Palermo, Italy.; ATeN center, University of Palermo, Viale delle Scienze building 18, 90128, Palermo, Italy.
Jazyk: angličtina
Zdroj: Bioprocess and biosystems engineering [Bioprocess Biosyst Eng] 2021 Nov; Vol. 44 (11), pp. 2361-2374. Date of Electronic Publication: 2021 Jul 25.
DOI: 10.1007/s00449-021-02609-4
Abstrakt: An advanced dual-flow perfusion bioreactor with a simple and compact design was developed and evaluated as a potential apparatus to reduce the gap between animal testing and drug administration to human subjects in clinical trials. All the experimental tests were carried out using an ad hoc Poly Lactic Acid (PLLA) scaffold synthesized via Thermally Induced Phase Separation (TIPS). The bioreactor shows a tunable radial flow throughout the microporous matrix of the scaffold. The radial perfusion was quantified both with permeability tests and with a mathematical model, applying a combination of Darcy's Theory, Bernoulli's Equation, and Poiseuille's Law. Finally, a diffusion test allowed to investigate the efficacy of the radial flow using Polymeric Fluorescent Nanoparticles (FNPs) mimicking drug/colloidal carriers. These tests confirmed the ability of our bioreactor to create a uniform distribution of particles inside porous matrices. All the findings candidate our system as a potential tool for drug pre-screening testing with a cost and time reduction over animal models.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Databáze: MEDLINE