Identification of key phenolic compounds responsible for antioxidant activities of free and bound fractions of blackberry varieties' extracts by boosted regression trees.

Autor: Gong ES; School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China., Li B; College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China., Li B; College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China., Podio NS; Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET, ISIDSA-SECYT-UNC, University City, Bv. Filloy s/n, SECYT, 5000 Córdoba, Argentina., Chen H; Institute of Edible Fungi, Shanghai Academy of Agricultural Science, Shanghai, 201403, China., Li T; Department of Food Science, Cornell University, Ithaca, 14853-7201, United States., Sun X; College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China., Gao N; College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China., Wu W; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China., Yang T; Office of Teaching and Global Affairs, South China University of Technology, Guangzhou, 510641, China., Xin G; College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China., Tian J; College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China., Si X; College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China., Liu C; College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China., Zhang J; College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, 110866, China., Liu RH; Department of Food Science, Cornell University, Ithaca, 14853-7201, United States.
Jazyk: angličtina
Zdroj: Journal of the science of food and agriculture [J Sci Food Agric] 2022 Feb; Vol. 102 (3), pp. 984-994. Date of Electronic Publication: 2021 Aug 14.
DOI: 10.1002/jsfa.11432
Abstrakt: Background: Free fractions of different blackberry varieties' extracts are high in phenolic compounds with antioxidant activities. However, the phenolic profiles and antioxidant activities against peroxyl radicals of bound fractions of different blackberry varieties' extracts have not been previously reported. In addition, what the key antioxidant phenolic compounds are in free and bound fractions of blackberry extracts remain unknown. This study aimed to investigate the phenolic profiles and antioxidant activities of free and bound fractions of eight blackberry varieties' extracts and reveal the key antioxidant phenolic compounds by boosted regression trees.
Results: Fifteen phenolics (three anthocyanins, four flavonols, three phenolic acids, two proanthocyanidins, and three ellagitannins) were identified in blackberry by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Ferulic acid, ellagic acid, procyanidin C1, kaempferol-O-hexoside, ellagitannins hex, and gallic acid were major bound phenolics. Bound fractions of eight blackberry varieties' extracts were high in phenolics and showed great antioxidant activity. Boosted regression trees analysis showed that cyanidin-3-O-glucoside and chlorogenic acid were the most significant compounds, contributing 48.4% and 15.9% respectively to the antioxidant activity of free fraction. Ferulic acid was the most significant antioxidant compound in bound fraction, with a contribution of 61.5%. Principal component analysis showed that Kiowa was the best among the eight varieties due to its phenolic profile and antioxidant activity.
Conclusion: It was concluded that blackberry varieties contained high amounts of bound phenolics, which confer health benefits through reducing oxidative stress. Ferulic acid was the key compound to explain the antioxidant activities of bound fractions. © 2021 Society of Chemical Industry.
(© 2021 Society of Chemical Industry.)
Databáze: MEDLINE