Development and implementation of a scalable and versatile test for COVID-19 diagnostics in rural communities.

Autor: Ceci A; Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA., Muñoz-Ballester C; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA., Tegge AN; Department of Statistics, Virginia Tech, Blacksburg, VA, USA., Brown KL; Virginia Tech Carilion School of Medicine, Roanoke, VA, USA., Umans RA; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA., Michel FM; Department of Geosciences, Virginia Tech, Blacksburg, VA, USA., Patel D; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA., Tewari B; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA., Martin J; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA., Alcoreza O; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.; Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA., Maynard T; Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA., Martinez-Martinez D; MRC London Institute of Medical Sciences, London, UK.; Institute of Clinical Sciences, Imperial College London, London, UK., Bordwine P; Division of Surveillance and Investigation, Office of Epidemiology, Virginia Department of Health, Christiansburg, USA., Bissell N; New River Valley Health District, Virginia Department of Health, Christiansburg, USA., Friedlander MJ; Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA., Sontheimer H; Center for Glial Biology in Health, Disease, and Cancer, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA., Finkielstein CV; Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA. finkielc@vt.edu.; Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA. finkielc@vt.edu.; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA. finkielc@vt.edu.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2021 Jul 20; Vol. 12 (1), pp. 4400. Date of Electronic Publication: 2021 Jul 20.
DOI: 10.1038/s41467-021-24552-4
Abstrakt: Rapid and widespread testing of severe acute respiratory coronavirus 2 (SARS-CoV-2) is essential for an effective public health response aimed at containing and mitigating the coronavirus disease 2019 (COVID-19) pandemic. Successful health policy implementation relies on early identification of infected individuals and extensive contact tracing. However, rural communities, where resources for testing are sparse or simply absent, face distinctive challenges to achieving this success. Accordingly, we report the development of an academic, public land grant University laboratory-based detection assay for the identification of SARS-CoV-2 in samples from various clinical specimens that can be readily deployed in areas where access to testing is limited. The test, which is a quantitative reverse transcription polymerase chain reaction (RT-qPCR)-based procedure, was validated on samples provided by the state laboratory and submitted for FDA Emergency Use Authorization. Our test exhibits comparable sensitivity and exceeds specificity and inclusivity values compared to other molecular assays. Additionally, this test can be re-configured to meet supply chain shortages, modified for scale up demands, and is amenable to several clinical specimens. Test development also involved 3D engineering critical supplies and formulating a stable collection media that allowed samples to be transported for hours over a dispersed rural region without the need for a cold-chain. These two elements that were critical when shortages impacted testing and when personnel needed to reach areas that were geographically isolated from the testing center. Overall, using a robust, easy-to-adapt methodology, we show that an academic laboratory can supplement COVID-19 testing needs and help local health departments assess and manage outbreaks. This additional testing capacity is particularly germane for smaller cities and rural regions that would otherwise be unable to meet the testing demand.
(© 2021. The Author(s).)
Databáze: MEDLINE