A pilot study of an automated personal identification process: Applying machine learning to panoramic radiographs.

Autor: Ortiz AG; Department of Community Dentistry, School of Dentistry, University of de São Paulo, São Paulo, Brazil., Soares GH; Department of Community Dentistry, School of Dentistry, University of de São Paulo, São Paulo, Brazil., da Rosa GC; Department of Community Dentistry, School of Dentistry, University of de São Paulo, São Paulo, Brazil., Biazevic MGH; Department of Community Dentistry, School of Dentistry, University of de São Paulo, São Paulo, Brazil., Michel-Crosato E; Department of Community Dentistry, School of Dentistry, University of de São Paulo, São Paulo, Brazil.
Jazyk: angličtina
Zdroj: Imaging science in dentistry [Imaging Sci Dent] 2021 Jun; Vol. 51 (2), pp. 187-193. Date of Electronic Publication: 2021 May 06.
DOI: 10.5624/isd.20200324
Abstrakt: Purpose: This study aimed to assess the usefulness of machine learning and automation techniques to match pairs of panoramic radiographs for personal identification.
Materials and Methods: Two hundred panoramic radiographs from 100 patients (50 males and 50 females) were randomly selected from a private radiological service database. Initially, 14 linear and angular measurements of the radiographs were made by an expert. Eight ratio indices derived from the original measurements were applied to a statistical algorithm to match radiographs from the same patients, simulating a semi-automated personal identification process. Subsequently, measurements were automatically generated using a deep neural network for image recognition, simulating a fully automated personal identification process.
Results: Approximately 85% of the radiographs were correctly matched by the automated personal identification process. In a limited number of cases, the image recognition algorithm identified 2 potential matches for the same individual. No statistically significant differences were found between measurements performed by the expert on panoramic radiographs from the same patients.
Conclusion: Personal identification might be performed with the aid of image recognition algorithms and machine learning techniques. This approach will likely facilitate the complex task of personal identification by performing an initial screening of radiographs and matching ante-mortem and post-mortem images from the same individuals.
Competing Interests: Conflicts of Interest: None
(Copyright © 2021 by Korean Academy of Oral and Maxillofacial Radiology.)
Databáze: MEDLINE