Assessment of the Autism Spectrum Disorder Based on Machine Learning and Social Visual Attention: A Systematic Review.

Autor: Minissi ME; Institute for Research and Innovation in Bioengineering (i3B), Universitat Politécnica de Valencia, Ciudad de la Innovación, Building 8B, s/n Camino de Vera, 46022, Valencia, Spain. meminiss@i3b.upv.es., Chicchi Giglioli IA; Institute for Research and Innovation in Bioengineering (i3B), Universitat Politécnica de Valencia, Ciudad de la Innovación, Building 8B, s/n Camino de Vera, 46022, Valencia, Spain., Mantovani F; Department of Human Sciences for Education ''Riccardo Massa'', University of Milano Bicocca, Milan, Italy., Alcañiz Raya M; Institute for Research and Innovation in Bioengineering (i3B), Universitat Politécnica de Valencia, Ciudad de la Innovación, Building 8B, s/n Camino de Vera, 46022, Valencia, Spain.
Jazyk: angličtina
Zdroj: Journal of autism and developmental disorders [J Autism Dev Disord] 2022 May; Vol. 52 (5), pp. 2187-2202. Date of Electronic Publication: 2021 Jun 08.
DOI: 10.1007/s10803-021-05106-5
Abstrakt: The assessment of autism spectrum disorder (ASD) is based on semi-structured procedures addressed to children and caregivers. Such methods rely on the evaluation of behavioural symptoms rather than on the objective evaluation of psychophysiological underpinnings. Advances in research provided evidence of modern procedures for the early assessment of ASD, involving both machine learning (ML) techniques and biomarkers, as eye movements (EM) towards social stimuli. This systematic review provides a comprehensive discussion of 11 papers regarding the early assessment of ASD based on ML techniques and children's social visual attention (SVA). Evidences suggest ML as a relevant technique for the early assessment of ASD, which might represent a valid biomarker-based procedure to objectively make diagnosis. Limitations and future directions are discussed.
(© 2021. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje