Transmembrane protein 168 mutation reduces cardiomyocyte cell surface expression of Nav1.5 through αB-crystallin intracellular dynamics.

Autor: Nguyen LKC; Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan., Shimizu A; Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan., Soh JEC; Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan., Komeno M; Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan., Sato A; Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan., Ogita H; Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
Jazyk: angličtina
Zdroj: Journal of biochemistry [J Biochem] 2021 Dec 28; Vol. 170 (5), pp. 577-585.
DOI: 10.1093/jb/mvab066
Abstrakt: Transmembrane protein 168 (TMEM168) was found to be localized on the nuclear membrane. A heterozygous mutation (c.1616G>A, p. R539Q) in TMEM168 was identified in patients with Brugada syndrome. This mutation reduced expression of cardiomyocyte sodium channel Nav1.5 via Nedd4-2 E3 ubiquitin ligase-induced ubiquitination and degradation. However, the detailed molecular mechanism provoked by the TMEM168 mutant remains unclear. Here, we demonstrated that small heat shock protein αB-crystallin, which can bind to Nav1.5 and Nedd4-2 and interfere with the association of both proteins, was strongly recruited from the cell surface to the perinuclear region because of the much higher affinity of αB-crystallin with the TMEM168 mutant than with wild-type TMEM168. Following knockdown of αB-crystallin in HL-1 cardiomyocytes, the interaction of Nav1.5 with Nedd4-2 was increased, despite the reduced expression of Nav1.5. Moreover, reduction of Nav1.5 expression by αB-crystallin knockdown was rescued in the presence of a proteasome inhibitor MG-132, suggesting the importance of the αB-crystallin-modulated ubiquitin-proteasome system for the stability of Nav1.5 expression. Collectively, the balance of molecular interactions among Nav1.5, Nedd4-2 and αB-crystallin plays a role in the regulation of cardiomyocyte cell surface expression of Nav1.5, and the TMEM168 mutant disturbs this balance, resulting in a decrease in Nav1.5 expression.
(© The Author(s) 2021. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje