Impact of irrigation with fish-processing effluents on nitrification and ammonia-oxidizer abundances in Patagonian arid soils.

Autor: Marcos MS; Laboratorio de Microbiología y Biotecnología, Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET, CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACD, Puerto Madryn, Argentina. magali@cenpat-conicet.gob.ar., González MC; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Argentina., Vallejos MB; Laboratorio de Microbiología y Biotecnología, Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET, CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACD, Puerto Madryn, Argentina., Barrionuevo CG; Laboratorio de Microbiología y Biotecnología, Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET, CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACD, Puerto Madryn, Argentina., Olivera NL; Laboratorio de Microbiología y Biotecnología, Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET, CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACD, Puerto Madryn, Argentina.
Jazyk: angličtina
Zdroj: Archives of microbiology [Arch Microbiol] 2021 Sep; Vol. 203 (7), pp. 3945-3953. Date of Electronic Publication: 2021 May 22.
DOI: 10.1007/s00203-021-02358-8
Abstrakt: This study aimed to evaluate the short-term effects of irrigation with diluted fish-processing effluents on soil pH, electrical conductivity, nitrification rate and abundance of ammonia oxidizers. To accomplish that, we constructed microcosms of soil from an undisturbed arid ecosystem of Patagonia, and irrigated them for 2 months with diluted effluents from a fish-processing factory or with water as control. In the initial soil sample, and along the experiment, we determined soil pH, electrical conductivity, and the concentration of inorganic nitrogen forms, which we used to calculate the net nitrification rate. We further estimated the abundances of ammonia-oxidizing archaea and bacteria in the initial soil sample and at the end of the experiment, by qPCR of amoA genes. Soil pH decreased and electrical conductivity increased in both irrigation treatments, although the effect was higher in effluent-irrigated microcosms. Soil nitrate + nitrite concentration, and thus the nitrification rate, was higher in effluent than in water-irrigated microcosms. The abundance of archaeal amoA genes was higher under effluent than water-irrigation, but that of bacterial amoA genes did not vary significantly between treatments. Neither ammonia-oxidizing archaea nor bacteria were influenced by the changes in soil pH and electrical conductivity induced by effluent irrigation.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Databáze: MEDLINE