Identification of retinoblastoma binding protein 7 (Rbbp7) as a mediator against tau acetylation and subsequent neuronal loss in Alzheimer's disease and related tauopathies.

Autor: Dave N; Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA., Vural AS; Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA., Piras IS; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.; Arizona Alzheimer's Consortium, Phoenix, AZ, USA., Winslow W; Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA., Surendra L; Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA., Winstone JK; Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.; School of Life Sciences, Arizona State University, Tempe, AZ, USA., Beach TG; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.; Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA., Huentelman MJ; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.; Arizona Alzheimer's Consortium, Phoenix, AZ, USA., Velazquez R; Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA. rvelazq3@asu.edu.; Arizona Alzheimer's Consortium, Phoenix, AZ, USA. rvelazq3@asu.edu.; School of Life Sciences, Arizona State University, Tempe, AZ, USA. rvelazq3@asu.edu.
Jazyk: angličtina
Zdroj: Acta neuropathologica [Acta Neuropathol] 2021 Aug; Vol. 142 (2), pp. 279-294. Date of Electronic Publication: 2021 May 12.
DOI: 10.1007/s00401-021-02323-1
Abstrakt: Evidence indicates that tau hyper-phosphorylation and subsequent neurofibrillary tangle formation contribute to the extensive neuronal death in Alzheimer's disease (AD) and related tauopathies. Recent work has identified that increased tau acetylation can promote tau phosphorylation. Tau acetylation occurs at lysine 280 resulting from increased expression of the lysine acetyltransferase p300. The exact upstream mechanisms mediating p300 expression remain elusive. Additional work highlights the role of the epigenome in tau pathogenesis, suggesting that dysregulation of epigenetic proteins may contribute to acetylation and hyper-phosphorylation of tau. Here, we identify and focus on the histone-binding subunit of the Nucleosome Remodeling and Deacetylase (NuRD) complex: Retinoblastoma-Binding Protein 7 (Rbbp7). Rbbp7 chaperones chromatin remodeling proteins to their nuclear histone substrates, including histone acetylases and deacetylases. Notably, Rbbp7 binds to p300, suggesting that it may play a role in modulating tau acetylation. We interrogated Rbbp7 in post-mortem brain tissue, cell lines and mouse models of AD. We found reduced Rbbp7 mRNA expression in AD cases, a significant negative correlation with CERAD (neuritic plaque density) and Braak Staging (pathogenic tau inclusions) and a significant positive correlation with post-mortem brain weight. We also found a neuron-specific downregulation of Rbbp7 mRNA in AD patients. Rbbp7 protein levels were significantly decreased in 3xTg-AD and PS19 mice compared to NonTg, but no decreases were found in APP/PS1 mice that lack tau pathology. In vitro, Rbbp7 overexpression rescued TauP301L-induced cytotoxicity in immortalized hippocampal cells and primary cortical neurons. In vivo, hippocampal Rbbp7 overexpression rescued neuronal death in the CA1 of PS19 mice. Mechanistically, we found that increased Rbbp7 reduced p300 levels, tau acetylation at lysine 280 and tau phosphorylation at AT8 and AT100 sites. Collectively, these data identify a novel role of Rbbp7, protecting against tau-related pathologies, and highlight its potential as a therapeutic target in AD and related tauopathies.
(© 2021. The Author(s).)
Databáze: MEDLINE