Combat of antimicrobial resistance in municipal wastewater treatment plant effluent via solar advanced oxidation processes: Achievements and perspectives.

Autor: V M Starling MC; Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil., Mendonça Neto RP; Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil; Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Pampulha, Belo Horizonte, MG, Brazil., Pires GFF; Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil., Vilela PB; Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil., Amorim CC; Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil. Electronic address: camila@desa.ufmg.br.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2021 Sep 10; Vol. 786, pp. 147448. Date of Electronic Publication: 2021 Apr 30.
DOI: 10.1016/j.scitotenv.2021.147448
Abstrakt: This review aims to gather main achievements and limitations associated to the application of solar photocatalytic processes with regard to the removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from municipal wastewater treatment plant effluent (MWWTPE). Solar photocatalytic processes were chosen considering the context of developing tropical countries. Among these processes, solar photo-Fenton has been proved effective for the elimination of ARB from MWWTPE at neutral pH in bench and pilot scale and also under continuous flow. Yet, ARG removal varies as according to the gene. Irradiation intensity and matrix composition play a key role on treatment efficiency for this purpose. The use of sulfate radical in modified solar photo-Fenton is still incipient for ARB and ARG removal. Also, investigations related to ARB resistance profile and horizontal gene transfer rates after solar photo-Fenton treatment must be further analyzed. Regarding solar heterogeneous photocatalysis, TiO 2 and TiO 2 -composites applied in suspension are the most commonly investigated for the removal of ARB and ARGs. Irradiation intensity, temperature and catalyst dosage affect treatment efficiency. However, most studies were performed in synthetic solutions using reduced sample volumes. Extended exposition times and addition of H 2 O 2 to the system (solar/TiO 2 /H 2 O 2 ) are required to prevent bacteria regrowth and ensure ARG abatement. In addition, enhancement of TiO 2 with graphene or (semi)metals improved ARB elimination. Differences concerning irradiation intensity, matrix composition, catalyst dosage, and model ARB and ARGs used in studies analyzed in this review hinder the comparison of photocatalysts synthesized by various research groups. Finally, future research should aim at evaluating the efficiency of solar photocatalytic processes in real matrices originated from sewage treatment systems applied in developing countries; determining indicators of antimicrobial resistance in MWWTPE; and investigating ARB mutation rate as well as the removal of cell-free ARGs present in suspension in MWWTPE.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE