Unravelling Magnetic Nanochain Formation in Dispersion for In Vivo Applications.

Autor: Nandakumaran N; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, 52425, Jülich, Germany.; Lehrstuhl für Experimentalphysik IVc, RWTH Aachen University, 52056, Aachen, Germany., Barnsley L; Australian Synchrotron, ANSTO, Clayton, 3168, Australia.; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748, Garching, Germany., Feoktystov A; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748, Garching, Germany., Ivanov SA; Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA., Huber DL; Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA., Fruhner LS; Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056, Aachen, Germany.; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Biological Matter (IBI-8), 52425, Jülich, Germany., Leffler V; Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056, Aachen, Germany.; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Biological Matter (IBI-8), 52425, Jülich, Germany., Ehlert S; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Biological Matter (IBI-8), 52425, Jülich, Germany., Kentzinger E; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, 52425, Jülich, Germany., Qdemat A; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, 52425, Jülich, Germany.; Lehrstuhl für Experimentalphysik IVc, RWTH Aachen University, 52056, Aachen, Germany., Bhatnagar-Schöffmann T; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, 52425, Jülich, Germany.; Lehrstuhl für Experimentalphysik IVc, RWTH Aachen University, 52056, Aachen, Germany.; Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, 52425, Jülich, Germany., Rücker U; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, 52425, Jülich, Germany., Wharmby MT; PETRA III, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany., Cervellino A; Swiss Light Source, Paul-Scherrer-Institut, Villigen PSI, 5232, Switzerland., Dunin-Borkowski RE; Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, 52425, Jülich, Germany., Brückel T; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, 52425, Jülich, Germany.; Lehrstuhl für Experimentalphysik IVc, RWTH Aachen University, 52056, Aachen, Germany., Feygenson M; Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Biological Matter (IBI-8), 52425, Jülich, Germany.
Jazyk: angličtina
Zdroj: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2021 Jun; Vol. 33 (24), pp. e2008683. Date of Electronic Publication: 2021 May 07.
DOI: 10.1002/adma.202008683
Abstrakt: Self-assembly of iron oxide nanoparticles (IONPs) into 1D chains is appealing, because of their biocompatibility and higher mobility compared to 2D/3D assemblies while traversing the circulatory passages and blood vessels for in vivo biomedical applications. In this work, parameters such as size, concentration, composition, and magnetic field, responsible for chain formation of IONPs in a dispersion as opposed to spatially confining substrates, are examined. In particular, the monodisperse 27 nm IONPs synthesized by an extended LaMer mechanism are shown to form chains at 4 mT, which are lengthened with applied field reaching 270 nm at 2.2 T. The chain lengths are completely reversible in field. Using a combination of scattering methods and reverse Monte Carlo simulations the formation of chains is directly visualized. The visualization of real-space IONPs assemblies formed in dispersions presents a novel tool for biomedical researchers. This allows for rapid exploration of the behavior of IONPs in solution in a broad parameter space and unambiguous extraction of ​the parameters of the equilibrium structures. Additionally, it can be extended to study novel assemblies formed by more complex geometries of IONPs.
(© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.)
Databáze: MEDLINE