Atrophic nonunion stromal cells form bone and recreate the bone marrow environment in vivo.

Autor: Vallim FC; Master Program in Musculoskeletal Sciences.; Trauma Center., Guimarães JAM; Trauma Center., Dias RB; Master Program in Musculoskeletal Sciences.; Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil., Sartore RC; Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil., Cavalcanti ADS; Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil., Leal AC; Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil., Duarte MEL; Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil., Bonfim DC; Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil.
Jazyk: angličtina
Zdroj: OTA international : the open access journal of orthopaedic trauma [OTA Int] 2018 Dec 18; Vol. 1 (3), pp. e008. Date of Electronic Publication: 2018 Dec 18 (Print Publication: 2018).
DOI: 10.1097/OI9.0000000000000008
Abstrakt: Introduction: Nonunion is a challenging condition in orthopaedics as its etiology is not fully understood. Clinical interventions currently aim to stimulate both the biological and mechanical aspects of the bone healing process by using bone autografts and surgical fixation. However, recent observations showed that atrophic nonunion tissues contain putative osteoprogenitors, raising the hypothesis that its reactivation could be explored to achieve bone repair.
Methods: Here we characterized atrophic nonunion stromal cells (NUSC) in vitro, using bone marrow stromal cells (BMSC) and osteoblasts as controls cells of the osteoblastic lineage, and evaluated its ability to form bone in vivo.
Results: NUSC had proliferative and senescence rates comparable to BMSC and osteoblasts, and homogeneously expressed the osteolineage markers CD90 and CD73. Regarding CD105 and CD146 expression, NUSC were closely related to osteoblasts, both with an inferior percentage of CD105 + /CD146 + cells as compared to BMSC. Despite this, NUSC differentiated along the osteogenic and adipogenic lineages in vitro; and when transplanted subcutaneously into immunocompromised mice, new bone formation and hematopoietic marrow were established.
Conclusions: This study demonstrates that NUSC are osteogenically competent, supporting the hypothesis that their endogenous reactivation could be a strategy to stimulate the bone formation while reducing the amount of bone autograft requirements.
Competing Interests: All authors state no conflicts of interest.
(Copyright © 2018 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Orthopaedic Trauma Association.)
Databáze: MEDLINE