Deep learning for detection of radiographic sacroiliitis: achieving expert-level performance.
Autor: | Bressem KK; Department of Radiology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.; Berlin Institute of Health, BIH, Berlin, Germany., Vahldiek JL; Department of Radiology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany. janis.vahldiek@charite.de., Adams L; Department of Radiology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.; Berlin Institute of Health, BIH, Berlin, Germany., Niehues SM; Department of Radiology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany., Haibel H; Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany., Rodriguez VR; Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany., Torgutalp M; Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany., Protopopov M; Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany., Proft F; Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany., Rademacher J; Berlin Institute of Health, BIH, Berlin, Germany.; Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany., Sieper J; Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany., Rudwaleit M; Department of Internal Medicine and Rheumatology, Klinikum Bielefeld Rosenhöhe, Bielefeld, Germany., Hamm B; Department of Radiology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany., Makowski MR; Department of Radiology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.; Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany., Hermann KG; Department of Radiology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany., Poddubnyy D; Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.; Department of Epidemiology, German Rheumatism Research Centre, Berlin, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Arthritis research & therapy [Arthritis Res Ther] 2021 Apr 08; Vol. 23 (1), pp. 106. Date of Electronic Publication: 2021 Apr 08. |
DOI: | 10.1186/s13075-021-02484-0 |
Abstrakt: | Background: Radiographs of the sacroiliac joints are commonly used for the diagnosis and classification of axial spondyloarthritis. The aim of this study was to develop and validate an artificial neural network for the detection of definite radiographic sacroiliitis as a manifestation of axial spondyloarthritis (axSpA). Methods: Conventional radiographs of the sacroiliac joints obtained in two independent studies of patients with axSpA were used. The first cohort comprised 1553 radiographs and was split into training (n = 1324) and validation (n = 229) sets. The second cohort comprised 458 radiographs and was used as an independent test dataset. All radiographs were assessed in a central reading session, and the final decision on the presence or absence of definite radiographic sacroiliitis was used as a reference. The performance of the neural network was evaluated by calculating areas under the receiver operating characteristic curves (AUCs) as well as sensitivity and specificity. Cohen's kappa and the absolute agreement were used to assess the agreement between the neural network and the human readers. Results: The neural network achieved an excellent performance in the detection of definite radiographic sacroiliitis with an AUC of 0.97 and 0.94 for the validation and test datasets, respectively. Sensitivity and specificity for the cut-off weighting both measurements equally were 88% and 95% for the validation and 92% and 81% for the test set. The Cohen's kappa between the neural network and the reference judgements were 0.79 and 0.72 for the validation and test sets with an absolute agreement of 90% and 88%, respectively. Conclusion: Deep artificial neural networks enable the accurate detection of definite radiographic sacroiliitis relevant for the diagnosis and classification of axSpA. |
Databáze: | MEDLINE |
Externí odkaz: |