Autor: |
Yarlagadda V; David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada., Rao VN; Medical Scientist Training Program, School of Medicine, Duke University, Durham, North Carolina 27710, United States., Kaur M; David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada., Guitor AK; David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada., Wright GD; David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada. |
Abstrakt: |
Increasing multidrug resistance in Neisseria gonorrheae is a growing public health crisis. Resistance to the last line therapies, cephalosporins and azithromycin, are of particular concern, fueling the need to discover new treatments. Here, we identified the phosphoglycolipid moenomycin from a screen of microbial natural products against drug-resistant N. gonorrheae as a potent antigonococcal agent. Moenomycin demonstrates excellent activity (MIC = 0.004-0.03 μg/mL) against a variety of multidrug-resistant N. gonorrheae . Importantly, moenomycin, thought to be a Gram-positive specific antibiotic, penetrates the Gram-negative gonococcal outer membrane. Moenomycin causes intracellular accumulation of peptidoglycan precursors, cell blebbing, and rupture of the cell envelope, all consistent with cell wall biosynthesis inhibition. Serial bacterial exposure to moenomycin for 14 days revealed slow development of resistance (MIC Day14 = 0.03-0.06 μg/mL), unlike the clinically used drug azithromycin. Our results offer the potential utility of moenomycin as a lead for antigonococcal therapeutic candidates and warrant further investigation. |