Cholesterol-rich nanoemulsion (LDE) as a novel drug delivery system to diagnose, delineate, and treat human glioblastoma.

Autor: Tedesco AC; Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil. Electronic address: atedesco@usp.br., Silva EPO; Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil., Jayme CC; Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil., Piva HL; Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil., Franchi LP; Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Campus Samambaia, Universidade Federal de Goiás (UFG), 74690-900 Goiânia, GO, Brazil.
Jazyk: angličtina
Zdroj: Materials science & engineering. C, Materials for biological applications [Mater Sci Eng C Mater Biol Appl] 2021 Apr; Vol. 123, pp. 111984. Date of Electronic Publication: 2021 Feb 23.
DOI: 10.1016/j.msec.2021.111984
Abstrakt: We have prepared and characterized a cholesterol-rich nanoemulsion called LDE, a mimic of classic lipoprotein macromolecules, that can be applied as a new drug delivery system for aluminum phthalocyanine chloride (PcAlCl). The LDE containing PcAlCl system prepared herein had mean size and zeta potential of 127 nm and -29 mV, respectively, and encapsulation rate efficiency was 81%, and stability of 17 months. Compared to classical liposomes, LDE was more efficient, especially in brain diseases like glioblastoma (GBM), as revealed by tests on the U-87 MG cell line. The LDEPc formulation did not display dark cytotoxicity, as expected. The best light dose for LDEPc was 1.0 J·cm -2 : its activity was 55% higher than PcAlCl in a compatible organic medium. In the U-87 MG cells, apoptosis was the preferential pathway activated by PDT. These results strongly support the use of LDE as a new theranostic system.
(Copyright © 2021. Published by Elsevier B.V.)
Databáze: MEDLINE