Shiga toxin-producing Escherichia coli isolated from pasteurized dairy products from Bahia, Brazil.

Autor: Rosario AILS; Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Federal University of Bahia (UFBA), Salvador, BA, 40170-115, Brazil; Laboratório de Inspeção e Tecnologia de Leite e Derivados (LAITLACTEOS), Federal University of Bahia (UFBA), Salvador, BA, 40170-110, Brazil; Center for Food Analysis (NAL), Technological Development Support, Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil., Castro VS; Center for Food Analysis (NAL), Technological Development Support, Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil., Santos LF; Núcleo de Doenças Entéricas e Infecções por Patógenos Especiais, Adolfo Lutz Institute, São Paulo, SP, 01246-902, Brazil., Lisboa RC; Laboratório de Zoonoses Bacterianas, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil., Vallim DC; Laboratório de Zoonoses Bacterianas, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil., Silva MCA; Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LABCARNE), Federal University of Bahia (UFBA), Salvador, BA, 40170-110, Brazil., Figueiredo EES; Laboratório de Microbiologia Molecular de Alimentos, Federal University of Mato Grosso (UFMT), Cuiabá, MT, 78060-900, Brazil., Conte-Junior CA; Center for Food Analysis (NAL), Technological Development Support, Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil., Costa MP; Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Federal University of Bahia (UFBA), Salvador, BA, 40170-115, Brazil; Laboratório de Inspeção e Tecnologia de Leite e Derivados (LAITLACTEOS), Federal University of Bahia (UFBA), Salvador, BA, 40170-110, Brazil. Electronic address: marioncosta@ufba.br.
Jazyk: angličtina
Zdroj: Journal of dairy science [J Dairy Sci] 2021 Jun; Vol. 104 (6), pp. 6535-6547. Date of Electronic Publication: 2021 Mar 23.
DOI: 10.3168/jds.2020-19511
Abstrakt: The presence of pathogenic Shiga toxin-producing Escherichia coli (STEC) in dairy products represents a public health concern because of its ability to produce the toxins Stx1 and Stx2, which cause intestinal diseases. Monitoring the stages of milk production and checking dairy products for contamination are crucial steps to ensure dairy safety. This study aimed to report the occurrence of thermotolerant coliforms, E. coli, and STEC strains in pasteurized dairy products and to evaluate the antibiotic resistance profiles, serotypes, and characterizations of the STEC isolates by pulsed-field gel electrophoresis. We obtained a total of 138 pasteurized dairy products from 15 processing plants in Bahia, Brazil, to examine coliforms, E. coli, and STEC strains. We found that 43% of samples (59/138) contained thermotolerant coliforms, and 30% (42/138) did not comply with Brazilian regulations. Overall, 6% (9/138) were positive for E. coli and 4% (5/138) were positive for STEC. We recovered 9 STEC isolates from pasteurized cream (2/9), Minas Padrão cheese (2/9), Minas Frescal cheese (4/9), and ricotta (1/9). All isolates were stx2-positive, and 2 were eae-positive. All isolates were negative for the "big 6" STEC serogroups, belonging instead to serotypes ONT:HNT, ONT:H12, O148:H-, OR:H40, OR:HNT, and O148:HNT. Pulsed-field gel electrophoresis revealed 100% genetic similarity among 3 isolates from 2 different samples produced in the same production facility, which may suggest cross-contamination. As well, we found isolates that were 98% similar but in samples produced in different production facilities, suggesting a mutual source of contamination or a circulating strain. Two STEC strains exhibited resistance to streptomycin. Although the isolates presented a low resistance profile and no strain belonged to the "big 6" pathogenic group, the circulation of stx2-positive STEC strains in ready-to-eat products highlights the importance of epidemiological surveillance inside the Brazilian dairy chain.
(Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE