High-Dimensional Atomistic Neural Network Potential to Study the Alignment-Resolved O 2 Scattering from Highly Oriented Pyrolytic Graphite.

Autor: Rivero Santamaría A; Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.; Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain., Ramos M; Instituto de Física Rosario, CONICET and Universidad Nacional de Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina.; Facultad de Ciencias Exactas, Ingeniera y Agrimensura, Universidad Nacional de Rosario, Av. Pellegrini 250, S2000BTP Rosario, Argentina., Alducin M; Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.; Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain., Busnengo HF; Instituto de Física Rosario, CONICET and Universidad Nacional de Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina., Díez Muiño R; Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.; Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain., Juaristi JI; Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.; Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain.; Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain.
Jazyk: angličtina
Zdroj: The journal of physical chemistry. A [J Phys Chem A] 2021 Apr 01; Vol. 125 (12), pp. 2588-2600. Date of Electronic Publication: 2021 Mar 18.
DOI: 10.1021/acs.jpca.1c00835
Abstrakt: A high dimensional and accurate atomistic neural network potential energy surface (ANN-PES) that describes the interaction between one O 2 molecule and a highly oriented pyrolytic graphite (HOPG) surface has been constructed using the open-source package (aenet). The validation of the PES is performed by paying attention to static characteristics as well as by testing its performance in reproducing previous ab initio molecular dynamics simulation results. Subsequently, the ANN-PES is used to perform quasi-classical molecular dynamics calculations of the alignment-dependent scattering of O 2 from HOPG. The results are obtained for 200 meV O 2 molecules with different initial alignments impinging with a polar incidence angle with respect to the surface normal of 22.5° on a thermalized (110 and 300 K) graphite surface. The choice of these initial conditions in our simulations is made to perform comparisons to recent experimental results on this system. Our results show that the scattering of O 2 from the HOPG surface is a rather direct process, that the angular distributions are alignment dependent, and that the final translational energy of end-on molecules is around 20% lower than that of side-on molecules. Upon collision with the surface, the molecules that are initially aligned perpendicular to the surface become highly rotationally excited, whereas a very small change in the rotational state of the scattered molecules is observed for the initial parallel alignments. The latter confirms the energy transfer dependence on the stereodynamics for the present system. The results of our simulations are in overall agreement with the experimental observations regarding the shape of the angular distributions and the alignment dependence of the in-plane reflected molecules.
Databáze: MEDLINE