Autor: |
Mauerhofer LM; Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria., Zwirtmayr S; Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria., Pappenreiter P; Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria., Bernacchi S; Krajete GmbH, Linz, Austria., Seifert AH; Krajete GmbH, Linz, Austria., Reischl B; Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.; Krajete GmbH, Linz, Austria., Schmider T; Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria., Taubner RS; Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.; Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria., Paulik C; Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria., Rittmann SKR; Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria. simon.rittmann@univie.ac.at. |
Abstrakt: |
Bioprocesses converting carbon dioxide with molecular hydrogen to methane (CH 4 ) are currently being developed to enable a transition to a renewable energy production system. In this study, we present a comprehensive physiological and biotechnological examination of 80 methanogenic archaea (methanogens) quantifying growth and CH 4 production kinetics at hyperbaric pressures up to 50 bar with regard to media, macro-, and micro-nutrient supply, specific genomic features, and cell envelope architecture. Our analysis aimed to systematically prioritize high-pressure and high-performance methanogens. We found that the hyperthermophilic methanococci Methanotorris igneus and Methanocaldococcoccus jannaschii are high-pressure CH 4 cell factories. Furthermore, our analysis revealed that high-performance methanogens are covered with an S-layer, and that they harbour the amino acid motif Tyr α444 Gly α445 Tyr α446 in the alpha subunit of the methyl-coenzyme M reductase. Thus, high-pressure biological CH 4 production in pure culture could provide a purposeful route for the transition to a carbon-neutral bioenergy sector. |