Propagative Oscillations in Codirectional Polariton Waveguide Couplers.

Autor: Beierlein J; Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany., Rozas E; Departamento de Física de Materiales, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain., Egorov OA; Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany., Klaas M; Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany., Yulin A; Faculty of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia., Suchomel H; Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany., Harder TH; Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany., Emmerling M; Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany., Martín MD; Departamento de Física de Materiales, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain., Shelykh IA; Faculty of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia.; Science Institute, University of Iceland, IS-107 Reykjavik, Iceland., Schneider C; Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.; Institute of Physics, University of Oldenburg, D-26129 Oldenburg, Germany., Peschel U; Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany., Viña L; Departamento de Física de Materiales, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.; Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain., Höfling S; Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.; SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom., Klembt S; Technische Physik, Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems, and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
Jazyk: angličtina
Zdroj: Physical review letters [Phys Rev Lett] 2021 Feb 19; Vol. 126 (7), pp. 075302.
DOI: 10.1103/PhysRevLett.126.075302
Abstrakt: We report on novel exciton-polariton routing devices created to study and purposely guide light-matter particles in their condensate phase. In a codirectional coupling device, two waveguides are connected by a partially etched section that facilitates tunable coupling of the adjacent channels. This evanescent coupling of the two macroscopic wave functions in each waveguide reveals itself in real space oscillations of the condensate. This Josephson-like oscillation has only been observed in coupled polariton traps so far. Here, we report on a similar coupling behavior in a controllable, propagative waveguide-based design. By controlling the gap width, channel length, or propagation energy, the exit port of the polariton flow can be chosen. This codirectional polariton device is a passive and scalable coupler element that can serve in compact, next generation logic architectures.
Databáze: MEDLINE