Seabed type and source parameters predictions using ship spectrograms in convolutional neural networks.

Autor: Van Komen DF; Physics and Astronomy, Brigham Young University, Provo, Utah, 84604, USA., Neilsen TB; Physics and Astronomy, Brigham Young University, Provo, Utah, 84604, USA., Mortenson DB; Physics and Astronomy, Brigham Young University, Provo, Utah, 84604, USA., Acree MC; Physics and Astronomy, Brigham Young University, Provo, Utah, 84604, USA., Knobles DP; Knobles Scientific and Analysis, Austin, Texas, 78731, USA., Badiey M; Department of Electrical Engineering, University of Delaware, Newark, Delaware 19716, USA., Hodgkiss WS; Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA.
Jazyk: angličtina
Zdroj: The Journal of the Acoustical Society of America [J Acoust Soc Am] 2021 Feb; Vol. 149 (2), pp. 1198.
DOI: 10.1121/10.0003502
Abstrakt: Broadband spectrograms from surface ships are employed in convolutional neural networks (CNNs) to predict the seabed type, ship speed, and closest point of approach (CPA) range. Three CNN architectures of differing size and depth are trained on different representations of the spectrograms. Multitask learning is employed; the seabed type prediction comes from classification, and the ship speed and CPA range are estimated via regression. Due to the lack of labeled field data, the CNNs are trained on synthetic data generated using measured sound speed profiles, four seabed types, and a random distribution of source parameters. Additional synthetic datasets are used to evaluate the ability of the trained CNNs to interpolate and extrapolate source parameters. The trained models are then applied to a measured data sample from the 2017 Seabed Characterization Experiment (SBCEX 2017). While the largest network provides slightly more accurate predictions on tests with synthetic data, the smallest network generalized better to the measured data sample. With regard to the input data type, complex pressure spectral values gave the most accurate and consistent results for the ship speed and CPA predictions with the smallest network, whereas using absolute values of the pressure provided more accurate results compared to the expected seabed types.
Databáze: MEDLINE