Metallothionein production is a common tolerance mechanism in four species growing in polluted Cu mining areas in Peru.
Autor: | Llerena JPP; Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru. Electronic address: pg_120@hotmail.com., Coasaca RL; Department of Sanitation and Environment, Faculty of Civil Engineering, Architecture and Urbanism, State University of Campinas, Campinas, SP 13083-970, Brazil; School of Chemical Engineering, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru., Rodriguez HOL; Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru., Llerena SÁP; Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru., Valencia YD; Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru., Mazzafera P; Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Crop Science, College of Agriculture 'Luiz de Queiroz' - ESALQ, University of São Paulo - USP, Piracicaba, SP, Brazil. |
---|---|
Jazyk: | angličtina |
Zdroj: | Ecotoxicology and environmental safety [Ecotoxicol Environ Saf] 2021 Apr 01; Vol. 212, pp. 112009. Date of Electronic Publication: 2021 Feb 05. |
DOI: | 10.1016/j.ecoenv.2021.112009 |
Abstrakt: | Cu pollution is a problem in mining areas in Peru. Here we evaluate the phytoextraction capacity, physiological and proteomic responses of four species growing in copper-contaminated areas in Arequipa, Peru. The plants used in the experiments were obtained by collecting seedlings (Tessaria integrifolia, Bacharis salicifolia), rhizomes (Eleocharis montevidensis) and seeds (Chenopodium murale) along a polluted river. They were exposed to solutions containing 2, 4, 8, 16 and 32 mg Cu L -1 during 20 days. Growth was affected in a concentration-dependent way. According to the tolerance index, B. salicifolia and C. murale were the most sensitive species, but with greater Cu phytoextraction capacity and accumulation in the biomass. The content and ratio of photosynthetic pigments changed differently for each specie and carotenoids level were less affected than chlorophyll. Cu also induced changes in the protein and sugar contents. Antioxidant enzyme activities (catalase and superoxide dismutase) increased with a decrease in the malondialdehyde. There were marked changes in the protein 2D-PAGE profiles with an increase in the abundance of metallothioneins (MT) of class II type I and II. Our results suggest that these species can grow in Cu polluted areas because they developed multiple tolerance mechanisms, such as and MTs production seems a important one. (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |