The baroreflex in aquatic and amphibious teleosts: Does terrestriality represent a significant driving force for the evolution of a more effective baroreflex in vertebrates?

Autor: Armelin VA; Department of Physiology, Institute of Biosciences, University of São Paulo (USP), Rua do Matão, Travessa 14, 321, São Paulo, SP, 05508-090, Brazil; Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto, SP, 15054-000, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil. Electronic address: vinicius.armelin@usp.br., Braga VHDS; Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto, SP, 15054-000, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil., Teixeira MT; Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto, SP, 15054-000, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil., Guagnoni IN; Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto, SP, 15054-000, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil., Wang T; Section for Zoophysiology, Department of Bioscience, Aarhus University (AU), C. F. Møllers Allé 3, Aarhus, 8000 Aarhus C, Denmark; National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil., Florindo LH; Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto, SP, 15054-000, Brazil; Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Rodovia Prof. Paulo Donato Castellane n/n, Jaboticabal, SP, 14884-900, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, Brazil.
Jazyk: angličtina
Zdroj: Comparative biochemistry and physiology. Part A, Molecular & integrative physiology [Comp Biochem Physiol A Mol Integr Physiol] 2021 May; Vol. 255, pp. 110916. Date of Electronic Publication: 2021 Feb 02.
DOI: 10.1016/j.cbpa.2021.110916
Abstrakt: All vertebrates have baroreflexes that provide fast regulation of arterial blood pressure (P A ) to maintain adequate tissue perfusion and avoid vascular lesions from excessive pressures. The baroreflex is a negative feedback loop, where altered P A results in reciprocal changes in heart rate (f H ) and systemic vascular conductance to restore pressure. In terrestrial environments, gravity usually leads to blood pooling in the lower body reducing venous return, cardiac filling, cardiac output and P A . Conversely, in aquatic environments, the hydrostatic pressure of surrounding water mitigates blood pooling and prevents vascular distensions. In this context, we aimed to test the hypothesis that vertebrate species that were exposed to gravity-induced hemodynamic disturbances throughout their evolutionary histories have a more effective barostatic reflex than those that were not. We examined the cardiac baroreflex of fish that perform (Clarias gariepinus and Hoplerythrinus unitaeniatus) and do not perform (Hoplias malabaricus and Oreochromis niloticus) voluntary terrestrial sojourns, using pharmacological manipulations of P A to characterize reflex changes in f H using a four-variable sigmoidal logistic function (i.e. the "Oxford technique"). Our results revealed that amphibious fish exhibit higher baroreflex gain and responsiveness to hypotension than strictly aquatic fish, suggesting that terrestriality and the gravitational circulatory stresses constitute a relevant driving force for the evolution of a more effective baroreflex in vertebrates. We also demonstrate that strictly aquatic teleosts have considerable baroreflex gain, supporting the view that the baroreflex is an ancient cardiovascular trait that appeared before vertebrates colonized the gravity-dominated realm of land.
(Copyright © 2021 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE