Autor: |
Sánchez de la Nava AM; Department of Cardiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.; CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.; Universitat Politècnica de València, València, Spain., Atienza F; Department of Cardiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.; CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain., Bermejo J; Department of Cardiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.; CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain., Fernández-Avilés F; Department of Cardiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain.; CIBERCV, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain. |
Abstrakt: |
Although atrial fibrillation (AF) is the most common cardiac arrhythmia, its early identification, diagnosis, and treatment is still challenging. Due to its heterogeneous mechanisms and risk factors, targeting an individualized treatment of AF demands a large amount of patient data to identify specific patterns. Artificial intelligence (AI) algorithms are particularly well suited for treating high-dimensional data, predicting outcomes, and eventually, optimizing strategies for patient management. The analysis of large patient samples combining different sources of information such as blood biomarkers, electrical signals, and medical images opens a new paradigm for improving diagnostic algorithms. In this review, we summarize suitable AI techniques for this purpose. In particular, we describe potential applications for understanding the structural and functional bases of the disease, as well as for improving early noninvasive diagnosis, developing more efficient therapies, and predicting long-term clinical outcomes of patients with AF. |