Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams.
Autor: | Näf MB; Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium., Koopman AS; Amsterdam Movement Sciences, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands., Baltrusch S; Amsterdam Movement Sciences, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.; Research and Development, Rehabilitation Centre Heliomare, Wijk aan Zee, Netherlands., Rodriguez-Guerrero C; Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium., Vanderborght B; Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium., Lefeber D; Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium. |
---|---|
Jazyk: | angličtina |
Zdroj: | Frontiers in robotics and AI [Front Robot AI] 2018 Jun 21; Vol. 5, pp. 72. Date of Electronic Publication: 2018 Jun 21 (Print Publication: 2018). |
DOI: | 10.3389/frobt.2018.00072 |
Abstrakt: | In the EU, lower back pain affects more than 40% of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons. Despite recent advances in the development of exoskeletons for industrial applications, they are not widely adopted by industry yet. Some of the challenges, which have to be overcome are a reduced range of motion, misalignment between the human anatomy and kinematics of the exoskeleton as well as discomfort. A body of research exists on how an exoskeleton can be designed to compensate for misalignment and thereby improve comfort. However, how to design an exoskeleton that achieves a similar range of motion as a human lumbar spine of up to 60° in the sagittal plane, has not been extensively investigated. We addressed this need by developing and testing a novel passive back support exoskeleton, including a mechanism comprised of flexible beams, which run in parallel to the spine, providing a large range of motion and lowering the peak torque requirements around the lumbo-sacral (L5/S1) joint. Furthermore, we ran a pilot study to test the biomechanical ( N = 2) and functional ( N = 3) impact on subjects while wearing the exoskeleton. The biomechanical testing was once performed with flexible beams as a back interface and once with a rigid structure. An increase of more than 25% range of motion of the trunk in the sagittal plane was observed by using the flexible beams. The pilot functional tests, which are compared to results from a previous study with the Laevo device, suggest, that the novel exoskeleton is perceived as less hindering in almost all tested tasks. (Copyright © 2018 Näf, Koopman, Baltrusch, Rodriguez-Guerrero, Vanderborght and Lefeber.) |
Databáze: | MEDLINE |
Externí odkaz: |