Evaluation of the efficacy of commercial protective cultures to inhibit mold and yeast in cottage cheese.
Autor: | Makki GM; Department of Food Science and Technology, Cornell University, Ithaca, NY 14850., Kozak SM; Department of Food Science and Technology, Cornell University, Ithaca, NY 14850., Jencarelli KG; Department of Food Science and Technology, Cornell University, Ithaca, NY 14850., Alcaine SD; Department of Food Science and Technology, Cornell University, Ithaca, NY 14850. Electronic address: alcaine@cornell.edu. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of dairy science [J Dairy Sci] 2021 Mar; Vol. 104 (3), pp. 2709-2718. Date of Electronic Publication: 2021 Jan 15. |
DOI: | 10.3168/jds.2020-19136 |
Abstrakt: | Biopreservation is defined as using microbes, their constituents, or both to control spoilage while satisfying consumer demand for clean-label products. The study objective was to investigate the efficacy of bacterial cultures in biopreserving cottage cheese against postprocessing fungal contamination. Cottage cheese curd and dressing were sourced from a manufacturer in New York State. Dressing was inoculated with 3 different commercial protective cultures-PC1 (mix of Lacticaseibacillus spp. and Lactiplantibacillus spp.), PC2 (Lacticaseibacillus rhamnosus), and PC3 (Lactic. rhamnosus)-following the manufacturer recommended dosage and then mixed with curd. A control with no protective culture was included. Nine species of yeast (Candida zeylanoides, Clavispora lusitaniae, Debaryomyces hansenii, Debaryomyces prosopidis, Kluyveromyces marxianus, Meyerozyma guilliermondii, Pichia fermentans, Rhodotorula mucilaginosa, and Torulaspora delbrueckii) and 11 species of mold (Aspergillus cibarius, Aureobasidium pullulans, Penicillium chrysogenum, Penicillium citrinum, Penicillium commune, Penicillium decumbens, Penicillium roqueforti, Mucor genevensis, Mucor racemosus, Phoma dimorpha, and Trichoderma amazonicum) were included in the study. Fungi strains were previously isolated from dairy processing environments and were inoculated onto the cheese surface at a rate of 20 cfu/g. Cheese was stored at 6 ± 2°C. Yeast levels were enumerated at 0, 7, 14, and 21 d postinoculation. Mold growth was visually observed on a weekly basis through d 42 of storage and imaged. Overall, the protective cultures were limited in their ability to delay the outgrowth in cottage cheese, with only 8 of the 20 fungal strains showing an effect of the cultures compared with the control. The protective cultures were not very effective against yeast, with only PC1 able to delay the outgrowth of 3 strains: D. hansenii, Tor. delbrueckii, and Mey. guilliermondii. The efficacy of these protective cultures against molds in cottage cheese was more promising, with all protective cultures showing the ability to delay spoilage of at least 1 mold strain. Both PC1 and PC2 were able to delay Pen. chrysogenum and Pho. dimorpha outgrowth, and PC1 also delayed Pen. commune, Pen. decumbens, and Pen. roqueforti to different extents compared with the controls. This study demonstrates that commercial lactic acid bacteria cultures vary in their performance to delay mold and yeast outgrowth, and thus each protective culture should be evaluated against the specific strains of fungi of concern within each specific dairy facility. (Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |