Autor: |
Muñoz Fabra E; Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain., Díez JL; Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain., Bondia J; Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain., Laguna Sanz AJ; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain. |
Abstrakt: |
Continuous Glucose Monitoring (CGM) has been a springboard of new diabetes management technologies such as integrated sensor-pump systems, the artificial pancreas, and more recently, smart pens. It also allows patients to make better informed decisions compared to a few measurements per day from a glucometer. However, CGM accuracy is reportedly affected during exercise periods, which can impact the effectiveness of CGM-based treatments. In this review, several studies that used CGM during exercise periods are scrutinized. An extensive literature review of clinical trials including exercise and CGM in type 1 diabetes was conducted. The gathered data were critically analysed, especially the Mean Absolute Relative Difference (MARD), as the main metric of glucose accuracy. Most papers did not provide accuracy metrics that differentiated between exercise and rest (non-exercise) periods, which hindered comparative data analysis. Nevertheless, the statistic results confirmed that CGM during exercise periods is less accurate. |