Neuroprotective effect of heparin Trisulfated disaccharide on ischemic stroke.

4 glycosidic linkage for activity. J. Biol. Chem. 277(50), 48227–48233 (2002). https://doi.org/10.1074/jbc.M205867200. (PMID: 10.1074/jbc.M20586720012374809)
Nader, H.B., Tersariol, I.L., Dietrich, C.P.: Antihemostatic activity of heparin disaccharides and oligosaccharides obtained by chemical and enzymatic fragmentation: reversal of the hemorrhagic activity by ATP and myosin. Thromb. Res. 54(3), 207–214 (1989). https://doi.org/10.1016/0049-3848(89)90228-4. (PMID: 10.1016/0049-3848(89)90228-42749612)
de Godoy, C.M.G., Vasques, Ê., Caricati-Neto, A., Tavares, J.G.P., Alves, B.J., Duarte, J., et al.: Heparin oligosaccharides have antiarrhythmic effect by accelerating the sodium-calcium exchanger. Front Cardiovasc Med. 5, 67 (2018). https://doi.org/10.3389/fcvm.2018.00067. (PMID: 10.3389/fcvm.2018.00067299309475999778)
Nader, H.B., Tersariol, I.L., Dietrich, C.P.: Structural requirements of heparin disaccharides responsible for hemorrhage: reversion of the antihemostatic effect by ATP. FASEB J. 3(12), 2420–2424 (1989). https://doi.org/10.1096/fasebj.3.12.2529161. (PMID: 10.1096/fasebj.3.12.25291612529161)
Nader, H.B., Porcionatto, M.A., Tersariol, I.L., Pinhal, M.A., Oliveira, F.W., Moraes, C.T., Dietrich, C.P.: Purification and substrate specificity of heparitinase I and heparitinase II from Flavobacterium heparinum. Analyses of the heparin and heparan sulfate degradation products by 13C NMR spectroscopy. J. Biol. Chem. 265(28), 16807–16813 (1990). (PMID: 10.1016/S0021-9258(17)44833-2)
Mao, A.J., Bechberger, J., Lidington, D., Galipeau, J., Laird, D.W., Naus, C.C.: Neuronal differentiation and growth control of neuro-2a cells after retroviral gene delivery of connexin43. J. Biol. Chem. 275(44), 34407–34414 (2000). https://doi.org/10.1074/jbc.M003917200. (PMID: 10.1074/jbc.M00391720010924505)
Wei, J., Xu, H., Shi, L., Tong, J., Zhang, J.: Trimetazidine protects cardiomyocytes against hypoxia-induced injury through ameliorates calcium homeostasis. Chem. Biol. Interact. 236, 47–56 (2015). https://doi.org/10.1016/j.cbi.2015.04.022. (PMID: 10.1016/j.cbi.2015.04.02225937560)
Labat-gest, V., Tomasi, S.: Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J. Vis. Exp. 76, (2013). https://doi.org/10.3791/50370.
Paxinos, G., Franklin, K.B.J.: The Mouse Brain in Stereotaxic Coordinates, 2nd edn. Academic Press, San Diego (2001).
Kramer, M., Dang, J., Baertling, F., Denecke, B., Clarner, T., Kirsch, C., Beyer, C., Kipp, M.: TTC staining of damaged brain areas after MCA occlusion in the rat does not constrict quantitative gene and protein analyses. J. Neurosci. Methods. 187(1), 84–89 (2010). https://doi.org/10.1016/j.jneumeth.2009.12.020. (PMID: 10.1016/j.jneumeth.2009.12.02020064557)
Hankey, G.J.: Stroke. Stroke. Lancet. 389(10069), 641–654 (2017). https://doi.org/10.1016/S0140-6736(16)30962-X. (PMID: 10.1016/S0140-6736(16)30962-X27637676)
Carmichael, S.T.: The 3 Rs of stroke biology: radial, relayed, and regenerative. Neurotherapeutics. 13(2), 348–359 (2016). https://doi.org/10.1007/s13311-015-0408-0. (PMID: 10.1007/s13311-015-0408-026602550)
Zündorf, G., Reiser, G.: Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid. Redox Signal. 14(7), 1275–1288 (2011). https://doi.org/10.1089/ars.2010.3359. (PMID: 10.1089/ars.2010.3359206150733122891)
Jeon, D., Chu, K., Jung, K.H., Kim, M., Yoon, B.W., Lee, C.J., Oh, U., Shin, H.S.: Na(+)/Ca(2+) exchanger 2 is neuroprotective by exporting Ca(2+) during a transient focal cerebral ischemia in the mouse. Cell Calcium. 43(5), 482–491 (2008). https://doi.org/10.1016/j.ceca.2007.08.003. (PMID: 10.1016/j.ceca.2007.08.00317884163)
Molinaro, P., Cuomo, O., Pignataro, G., Boscia, F., Sirabella, R., Pannaccione, A., Secondo, A., Scorziello, A., Adornetto, A., Gala, R., Viggiano, D., Sokolow, S., Herchuelz, A., Schurmans, S., di Renzo, G., Annunziato, L.: Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J. Neurosci. 28(5), 1179–1184 (2008). https://doi.org/10.1523/JNEUROSCI.4671-07.2008. (PMID: 10.1523/JNEUROSCI.4671-07.2008182348956671397)
Molinaro, P., Cantile, M., Cuomo, O., Secondo, A., Pannaccione, A., Ambrosino, P., Pignataro, G., Fiorino, F., Severino, B., Gatta, E., Sisalli, M.J., Milanese, M., Scorziello, A., Bonanno, G., Robello, M., Santagada, V., Caliendo, G., di Renzo, G., Annunziato, L.: Neurounina-1, a novel compound that increases Na+/Ca2+ exchanger activity, effectively protects against stroke damage. Mol. Pharmacol. 83(1), 142–156 (2013). https://doi.org/10.1124/mol.112.080986. (PMID: 10.1124/mol.112.08098623066092)
Cerullo, P., Brancaccio, P., Anzilotti, S., Vinciguerra, A., Cuomo, O., Fiorino, F., Severino, B., di Vaio, P., di Renzo, G., Annunziato, L., Pignataro, G.: Acute and long-term NCX activation reduces brain injury and restores behavioral functions in mice subjected to neonatal brain ischemia. Neuropharmacology. 135, 180–191 (2018). https://doi.org/10.1016/j.neuropharm.2018.03.017. (PMID: 10.1016/j.neuropharm.2018.03.01729551690)
He, Z., Feng, S., Tong, Q., Hilgemann, D.W., Philipson, K.D.: Interaction of PIP(2) with the XIP region of the cardiac Na/Ca exchanger. Am J Physiol Cell Physiol. 278, C661–C666 (2000). https://doi.org/10.1152/ajpcell.2000.278.4.c661. (PMID: 10.1152/ajpcell.2000.278.4.c66110751315)
Wu, G., Xie, X., Lu, Z.H., Ledeen, R.W.: Sodium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 106, 10829–10834 (2009). https://doi.org/10.1073/pnas.0903408106. (PMID: 10.1073/pnas.0903408106195416362697114)
Buenaflor, F.G.: Recurrence rate of ischemic stroke: a single center experience. J. Neurol. Sci. 381, 399 (2017). https://doi.org/10.1016/j.jns.2017.08.3340. (PMID: 10.1016/j.jns.2017.08.3340)
Diener, H.C., Weimar, C., Weber, R.: Antiplatelet therapy in secondary stroke prevention--state of the art. J. Cell. Mol. Med. 14(11), 2552–2560 (2010). https://doi.org/10.1111/j.1582-4934.2010.01163.x. (PMID: 10.1111/j.1582-4934.2010.01163.x207384444373475)
Whelihan, M.F., Cooley, B., Xu, Y., Pawlinski, R., Liu, J., Key, N.S.: In vitro and in vivo characterization of a reversible synthetic heparin analog. Thromb. Res. 138, 121–129 (2016). https://doi.org/10.1016/j.thromres.2015.12.007. (PMID: 10.1016/j.thromres.2015.12.00726709038) -->
Contributed Indexing: Keywords: Calcium overload; Hypoxia; Neuroprotection; Stroke; Trisulfated disaccharide
Substance Nomenclature: 0 (2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate)
0 (Disaccharides)
0 (Neuroprotective Agents)
0 (heparin disaccharide)
67526-95-8 (Thapsigargin)
9005-49-6 (Heparin)
GYV9AM2QAG (Thiourea)
SY7Q814VUP (Calcium)
Entry Date(s): Date Created: 20210107 Date Completed: 20220128 Latest Revision: 20240226
Update Code: 20240226
DOI: 10.1007/s10719-020-09966-4
PMID: 33411076
Autor: Chiarantin GMD; Laboratory of Molecular Neurobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.; Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil., Delgado-Garcia LM; Laboratory of Molecular Neurobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.; Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil., Zamproni LN; Laboratory of Molecular Neurobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.; Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil., Lima MA; Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil.; Molecular & Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, ST5 5BG, UK., Nader HB; Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil., Tersariol ILS; Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil. ivarne.tersariol@gmail.com., Porcionatto M; Laboratory of Molecular Neurobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil. marimelia.porcionatto@unifesp.br.; Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil. marimelia.porcionatto@unifesp.br.
Jazyk: angličtina
Zdroj: Glycoconjugate journal [Glycoconj J] 2021 Feb; Vol. 38 (1), pp. 35-43. Date of Electronic Publication: 2021 Jan 07.
DOI: 10.1007/s10719-020-09966-4
Abstrakt: Cells undergoing hypoxia experience intense cytoplasmic calcium (Ca 2+ ) overload. High concentrations of intracellular calcium ([Ca 2+ ] i ) can trigger cell death in the neural tissue, a hallmark of stroke. Neural Ca 2+ homeostasis involves regulation by the Na + /Ca 2+ exchanger (NCX). Previous data published by our group showed that a product of the enzymatic depolymerization of heparin by heparinase, the unsaturated trisulfated disaccharide (TD; ΔU, 2S-GlcNS, 6S), can accelerate Na + /Ca 2+ exchange via NCX, in hepatocytes and aorta vascular smooth muscle cells. Thus, the objective of this work was to verify whether TD could act as a neuroprotective agent able to prevent neuronal cell death by reducing [Ca 2+ ] i . Pretreatment of N2a cells with TD reduced [Ca 2+] i rise induced by thapsigargin and increased cell viability under [Ca 2+] I overload conditions and in hypoxia. Using a murine model of stroke, we observed that pretreatment with TD decreased cerebral infarct volume and cell death. However, when mice received KB-R7943, an NCX blocker, the neuroprotective effect of TD was abolished, strongly suggesting that this neuroprotection requires a functional NCX to happen. Thus, we propose TD-NCX as a new therapeutic axis for the prevention of neuronal death induced by [Ca 2+ ] i overload.
Databáze: MEDLINE