Initial findings in traumatic peripheral nerve injury and repair with diffusion tensor imaging.

Autor: Pridmore MD; Vanderbilt Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Glassman GE; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Pollins AC; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Manzanera Esteve IV; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Drolet BC; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Weikert DR; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Does MD; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA., Perdikis G; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Thayer WP; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Dortch RD; Vanderbilt Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.; Department of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA.
Jazyk: angličtina
Zdroj: Annals of clinical and translational neurology [Ann Clin Transl Neurol] 2021 Feb; Vol. 8 (2), pp. 332-347. Date of Electronic Publication: 2021 Jan 06.
DOI: 10.1002/acn3.51270
Abstrakt: Objective: Management of peripheral nerve injuries requires physicians to rely on qualitative measures from patient history, electromyography, and physical exam. Determining a successful nerve repair can take months to years for proximal injuries, and the resulting delays in clinical decision-making can lead to a negative impact on patient outcomes. Early identification of a failed nerve repair could prevent permanent muscle atrophy and loss of function. This study aims to test the feasibility of performing diffusion tensor imaging (DTI) to evaluate injury and recovery following repair of wrist trauma. We hypothesize that DTI provides a noninvasive and reliable assessment of regeneration, which may improve clinical decision-making and alter the clinical course of surgical interventions.
Methods: Clinical and MRI measurements from subjects with traumatic peripheral nerve injury, carpal tunnel syndrome, and healthy control subjects were compared to evaluate the relationship between DTI metrics and injury severity.
Results: Fractional anisotropy from DTI was sensitive to differences between damaged and healthy nerves, damaged and compressed nerves, and injured and healthy contralateral nerves. Longitudinal measurements in two injury subjects also related to clinical outcomes. Implications of other diffusion measures are also discussed.
Interpretation: DTI is a sensitive tool for wrist nerve injuries and can be utilized for monitoring nerve recovery. Across three subjects with nerve injuries, this study has shown how DTI can detect abnormalities between injured and healthy nerves, measure recovery, and determine if re-operation was successful. Additional comparisons to carpal tunnel syndrome and healthy nerves show that DTI is sensitive to the degree of impairment.
(© 2021 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.)
Databáze: MEDLINE