Molecular surveillance and temporal monitoring of malaria parasites in focal Vietnamese provinces.
Autor: | Van Long B; Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany., Allen G; Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany., Brauny M; Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany., Linh LTK; Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.; Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam., Pallerla SR; Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany., Huyen TTT; Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam., Van Tong H; Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam., Toan NL; Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam., Quyet D; Vietnam Military Medical University, Hanoi, Vietnam., Son HA; Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam. hoanhsonhp@gmail.com., Velavan TP; Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany. velavan@medizin.uni-tuebingen.de.; Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam. velavan@medizin.uni-tuebingen.de. |
---|---|
Jazyk: | angličtina |
Zdroj: | Malaria journal [Malar J] 2020 Dec 31; Vol. 19 (1), pp. 458. Date of Electronic Publication: 2020 Dec 31. |
DOI: | 10.1186/s12936-020-03561-6 |
Abstrakt: | Background: While the World Health Organization (WHO) Southeast Asia region has the second highest incidence of malaria worldwide, malaria in Vietnam is focal to few provinces, where delayed parasite clearance to anti-malarial drugs is documented. This study aims to understand Plasmodium species distribution and the genetic diversity of msp1 and msp2 of parasite populations using molecular tools. Methods: A total of 222 clinical isolates from individuals with uncomplicated malaria were subjected to Plasmodium species identification by nested real-time PCR. 166 isolates positive for Plasmodium falciparum mono infections were further genotyped for msp1 (MAD20, K1, and RO33), and msp2 allelic families (3D7 and FC27). Amplicons were resolved through capillary electrophoresis in the QIAxcel Advanced system. Results: Mono-infections were high and with 75% P. falciparum, 14% Plasmodium vivax and 9% P. falciparum/P. vivax co-infections, with less than 1% Plasmodium malariae identified. For msp1, MAD20 was the most prevalent (99%), followed by K1 (46%) allelic family, with no sample testing positive for RO33 (0%). For msp2, 3D7 allelic family was predominant (97%), followed by FC27 (10%). The multiplicity of infection of msp1 and msp2 was 2.6 and 1.1, respectively, and the mean overall multiplicity of infection was 3.7, with the total number of alleles ranging from 1 to 7. Conclusions: Given the increasing importance of antimalarial drugs in the region, the genetic diversity of P. falciparum msp1 and msp2 should be regularly monitored with respect to treatment outcomes and/or efficacy studies in regions, where there are ongoing changes in the malaria epidemiology. |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |