Emergence of multistability and strongly asymmetric collective modes in two quorum sensing coupled identical ring oscillators.

Autor: Hellen EH; Department of Physics and Astronomy, University of North Carolina Greensboro, Greensboro, North Carolina 27402, USA., Volkov E; Department of Theoretical Physics, Lebedev Physical Institute, Leninsky 53, Moscow 119991, Russia.
Jazyk: angličtina
Zdroj: Chaos (Woodbury, N.Y.) [Chaos] 2020 Dec; Vol. 30 (12), pp. 121101.
DOI: 10.1063/5.0029959
Abstrakt: The simplest ring oscillator is made from three strongly nonlinear elements repressing each other unidirectionally, resulting in the emergence of a limit cycle. A popular implementation of this scheme uses repressor genes in bacteria, creating the synthetic genetic oscillator known as the Repressilator. We consider the main collective modes produced when two identical Repressilators are mean-field-coupled via the quorum-sensing mechanism. In-phase and anti-phase oscillations of the coupled oscillators emerge from two Andronov-Hopf bifurcations of the homogeneous steady state. Using the rate of the repressor's production and the value of coupling strength as the bifurcation parameters, we performed one-parameter continuations of limit cycles and two-parameter continuations of their bifurcations to show how bifurcations of the in-phase and anti-phase oscillations influence the dynamical behaviors for this system. Pitchfork bifurcation of the unstable in-phase cycle leads to the creation of novel inhomogeneous limit cycles with very different amplitudes, in contrast to the well-known asymmetrical limit cycles arising from oscillation death. The Neimark-Sacker bifurcation of the anti-phase cycle determines the border of an island in two-parameter space containing almost all the interesting regimes including the set of resonant limit cycles, the area with stable inhomogeneous cycle, and very large areas with chaotic regimes resulting from torus destruction and period doubling of resonant cycles and inhomogeneous cycles. We discuss the structure of the chaos skeleton to show the role of inhomogeneous cycles in its formation. Many regions of multistability and transitions between regimes are presented. These results provide new insights into the coupling-dependent mechanisms of multistability and collective regime symmetry breaking in populations of identical multidimensional oscillators.
Databáze: MEDLINE