A high temperature dual-mode quartz crystal microbalance technique for erosion and thermal desorption spectroscopy measurements.

Autor: Stadlmayr R; TU Wien, Institute of Applied Physics, Fusion@ÖAW, 1040 Vienna, Austria., Szabo PS; TU Wien, Institute of Applied Physics, Fusion@ÖAW, 1040 Vienna, Austria., Biber H; TU Wien, Institute of Applied Physics, Fusion@ÖAW, 1040 Vienna, Austria., Koslowski HR; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, 52425 Jülich, Germany., Kadletz E; TU Wien, Institute of Applied Physics, Fusion@ÖAW, 1040 Vienna, Austria., Cupak C; TU Wien, Institute of Applied Physics, Fusion@ÖAW, 1040 Vienna, Austria., Wilhelm RA; TU Wien, Institute of Applied Physics, Fusion@ÖAW, 1040 Vienna, Austria., Schmid M; TU Wien, Institute of Applied Physics, Fusion@ÖAW, 1040 Vienna, Austria., Linsmeier C; Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, 52425 Jülich, Germany., Aumayr F; TU Wien, Institute of Applied Physics, Fusion@ÖAW, 1040 Vienna, Austria.
Jazyk: angličtina
Zdroj: The Review of scientific instruments [Rev Sci Instrum] 2020 Dec 01; Vol. 91 (12), pp. 125104.
DOI: 10.1063/5.0012028
Abstrakt: An improved quartz crystal microbalance measurement method is described, which allows us to determine erosion, implantation, and release rates of thin films, during changing temperatures and up to 700 K. A quasi-simultaneous excitation of two eigenmodes of the quartz resonator is able to compensate for frequency drifts due to temperature changes. The necessary electronics, the controlling behavior, and the dual-mode temperature compensation are described. With this improved technique, quantitative in situ temperature-programmed desorption measurements are possible and the quartz crystal microbalance can be used for quantification of thermal desorption spectroscopy measurements with a quadrupole mass spectrometer. This is demonstrated by a study of the retention and release behavior of hydrogen isotopes in fusion-relevant materials. We find that more than 90% of the deuterium implanted into a thin film of beryllium is released during a subsequent temperature ramp up to 500 K.
Databáze: MEDLINE