Lipoteichoic acid, a cell wall component of Gram-positive bacteria, induces sleep and fever and suppresses feeding.

Autor: Szentirmai É; Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, United States; Sleep and Performance Research Center, Washington State University, Spokane, WA, United States. Electronic address: eszentirmai@wsu.edu., Massie AR; Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, United States., Kapás L; Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, WA, United States; Sleep and Performance Research Center, Washington State University, Spokane, WA, United States.
Jazyk: angličtina
Zdroj: Brain, behavior, and immunity [Brain Behav Immun] 2021 Feb; Vol. 92, pp. 184-192. Date of Electronic Publication: 2020 Dec 09.
DOI: 10.1016/j.bbi.2020.12.008
Abstrakt: Fragments of the bacterial cell wall are bioactive microbial molecules that have profound effects on the function of the brain. Some of the cell wall constituents are common to both Gram-positive and Gram-negative bacteria, e.g., peptidoglycans, while other cell wall components are specific to either Gram-positive or Gram-negative microbes. Lipopolysaccharide (LPS), also called endotoxin, is found exclusively in Gram-negative bacteria, while lipoteichoic acid (LTA) is specific to Gram-positive bacteria. The effects of peptidoglycans, their fragments, and LPS are well characterized, they induce sleep, fever and anorexia. In the present study, we investigated the sleep, body temperature and food intake modulating effects of LTA. We found that intraperitoneal injection of 100 and 250 μg LTA from B. subtilis and S. aureus increases non-rapid-eye movement sleep (NREMS) in mice. The effects were dose-dependent, and the changes were accompanied by decreased motor activity and feeding as well as febrile responses. Intraperitoneal injection of 10 μg LTA induced monophasic increases in body temperature, while 100 and 250 μg LTA from B. subtilis induced initial hypothermia followed by fever. Treatment with 250 μg LTA from S. aureus elicited monophasic hypothermia. Administration of 300 μg/kg LTA from S. aureus directly into the portal vein elicited similar sleep responses in rats but did not affect body temperature. The sleep-modulating effects of LTA were similar to that of LPS in mice, although LTA appears to be less potent. These findings suggest that the role of LTA in signaling by Gram-positive bacteria in the host body is analogous to the role of LPS/endotoxin in signaling by Gram-negative microbes. LTA may play a role in the development of sickness response in clinically manifest Gram-positive bacterial infections and may contribute to sleep signaling by the commensal intestinal microbiota.
(Copyright © 2020 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE