Predicting Drug Interactions with Human Equilibrative Nucleoside Transporters 1 and 2 Using Functional Knockout Cell Lines and Bayesian Modeling.
Autor: | Miller SR; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)., Zhang X; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)., Hau RK; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)., Jilek JL; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)., Jennings EQ; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)., Galligan JJ; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)., Foil DH; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)., Zorn KM; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)., Ekins S; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)., Wright SH; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.) shwright@email.arizona.edu., Cherrington NJ; Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.) cherring@pharmacy.arizona.edu. |
---|---|
Jazyk: | angličtina |
Zdroj: | Molecular pharmacology [Mol Pharmacol] 2021 Feb; Vol. 99 (2), pp. 147-162. Date of Electronic Publication: 2020 Dec 01. |
DOI: | 10.1124/molpharm.120.000169 |
Abstrakt: | Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2. We characterized uridine transport in these cell lines and generated Bayesian models to predict interactions with the ENTs. Quantification of [ 3 H]uridine uptake in the presence of the ENT-specific inhibitor S -(4-nitrobenzyl)-6-thioinosine (NBMPR) demonstrated functional loss of each transporter. Nine nucleoside reverse-transcriptase inhibitors and 37 nucleoside/heterocycle analogs were evaluated to identify ENT interactions. Twenty-one compounds inhibited uridine uptake and abacavir, nevirapine, ticagrelor, and uridine triacetate had different IC (Copyright © 2021 by The American Society for Pharmacology and Experimental Therapeutics.) |
Databáze: | MEDLINE |
Externí odkaz: |