Circadian zinc feeding regime in laying hens related to laying performance, oxidation status, and interaction of zinc and calcium.

Autor: Lin X; Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China., Meng T; Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China., Yang T; Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China., Xu X; Guangzhou Tanke Bio-tech Co., Ltd., Guangzhou, Guangdong 510528, China., Zhao Y; Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China. Electronic address: 2567379022@qq.com., Wu X; Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China. Electronic address: wuxin@isa.ac.cn.
Jazyk: angličtina
Zdroj: Poultry science [Poult Sci] 2020 Dec; Vol. 99 (12), pp. 6783-6796. Date of Electronic Publication: 2020 Aug 13.
DOI: 10.1016/j.psj.2020.06.086
Abstrakt: This study investigated that circadian zinc (Zn) feeding regime affected laying performance, Zn and calcium (Ca) status, antioxidant capacity and gene expression of circadian clock, and Ca and Zn transporter in laying hens. In total, 162 of 21-wk Hyline Sophie laying hens were assigned randomly into 3 groups including CON group (Control Zn, basal diets supplemented 60 mg/kg Zn), HL group (high-low Zn, basal diets supplemented 120 mg/kg Zn-basal diets), and LH group (low-high Zn, basal diets-basal diets supplemented 120 mg/kg Zn), which were fed at 0,530 h and 1,530 h, respectively. Blood, tibia, duodenum, and eggshell gland samples were collected at 8 h intervals with starting at 0,000 h in 1 d after 10 wk of experiment. Compared with CON group: 1) Feed conversion ratio (FCR) of LH and HL group decreased significantly (P < 0.05); 2) in serum, total antioxidant capacity and CuZn-superoxide dismutase (SOD) at 0,000 h increased significantly, as well as Ca and Zn concentration of tibia at 0,800 h in LH group (P < 0.05); 3) in duodenum, mRNA expression of calbindin-d28k (CaBP) and NCX1 at 1,600 h in HL group upregulated significantly, as well as Per2 and Per3 at 0,000 h, CLOCK, Cry2, Per2, and Per3 at 1,600 h (P < 0.05). But, Zn5 at 0,800 h in HL group downregulated significantly (P < 0.05). 4) In eggshell gland, the mRNA expression of CaBP at 0,000 h and Zn5 at 1,600 h in HL group downregulated significantly (P < 0.05). However, SOD at 1,600 h in HL group upregulated significantly, as well as Cry1 and Per3 at 0,800 h in HL group upregulated significantly (P < 0.05). In conclusion, circadian Zn feeding diet regime was beneficial to improvement of FCR. The regulation of laying hens' circadian rhythms affected Zn and Ca transporter and interrelationship between Ca and Zn metabolism, also altered antioxidant capacity in present study. Therefore, circadian Zn feeding regime can be considered as a new method to improve laying performance in laying hens.
(Copyright © 2020. Published by Elsevier Inc.)
Databáze: MEDLINE