PAPPA-mediated adipose tissue remodeling mitigates insulin resistance and protects against gestational diabetes in mice and humans.

Autor: Rojas-Rodriguez R; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.; Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA., Ziegler R; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA., DeSouza T; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA., Majid S; Clinical Translational Research Pathway, University of Massachusetts Medical School, Worcester, MA 01605, USA., Madore AS; Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA., Amir N; Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA., Pace VA; Clinical Translational Research Pathway, University of Massachusetts Medical School, Worcester, MA 01605, USA., Nachreiner D; Clinical Translational Research Pathway, University of Massachusetts Medical School, Worcester, MA 01605, USA., Alfego D; Division of Data Sciences and Technology, IT, University of Massachusetts Medical School, Worcester, MA 01605, USA., Mathew J; Division of Data Sciences and Technology, IT, University of Massachusetts Medical School, Worcester, MA 01605, USA.; Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA., Leung K; Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA., Moore Simas TA; Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA., Corvera S; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA. silvia.corvera@umassmed.edu.
Jazyk: angličtina
Zdroj: Science translational medicine [Sci Transl Med] 2020 Nov 25; Vol. 12 (571).
DOI: 10.1126/scitranslmed.aay4145
Abstrakt: Pregnancy is a physiological state of continuous adaptation to changing maternal and fetal nutritional needs, including a reduction of maternal insulin sensitivity allowing for appropriately enhanced glucose availability to the fetus. However, excessive insulin resistance in conjunction with insufficient insulin secretion results in gestational diabetes mellitus (GDM), greatly increasing the risk for pregnancy complications and predisposing both mothers and offspring to future metabolic disease. Here, we report a signaling pathway connecting pregnancy-associated plasma protein A (PAPPA) with adipose tissue expansion in pregnancy. Adipose tissue plays a central role in the regulation of insulin sensitivity, and we show that, in both mice and humans, pregnancy caused remodeling of adipose tissue evidenced by altered adipocyte size, vascularization, and in vitro expansion capacity. PAPPA is known to be a metalloprotease secreted by human placenta that modulates insulin-like growth factor (IGF) bioavailability through prolteolysis of IGF binding proteins (IGFBPs) 2, 4, and 5. We demonstrate that recombinant PAPPA can stimulate ex vivo human adipose tissue expansion in an IGFBP-5- and IGF-1-dependent manner. Moreover, mice lacking PAPPA displayed impaired adipose tissue remodeling, pregnancy-induced insulin resistance, and hepatic steatosis, recapitulating multiple aspects of human GDM. In a cohort of 6361 pregnant women, concentrations of circulating PAPPA are inversely correlated with glycemia and odds of developing GDM. These data identify PAPPA and the IGF signaling pathway as necessary for the regulation of maternal adipose tissue physiology and systemic glucose homeostasis, with consequences for long-term metabolic risk and potential for therapeutic use.
(Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
Databáze: MEDLINE