Autor: |
Mendis BG; Department of Physics, Durham University, South Road, DurhamDH1 3LE, UK., Barthel J; Ernst Ruska Centre (ER-C), Forschungszentrum Jülich GmbH, Jülich52425, Germany., Findlay SD; School of Physics and Astronomy, Monash University, Clayton, VIC3800, Australia., Allen LJ; School of Physics, University of Melbourne, Parkville, VIC3010, Australia. |
Jazyk: |
angličtina |
Zdroj: |
Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada [Microsc Microanal] 2020 Dec; Vol. 26 (6), pp. 1147-1157. |
DOI: |
10.1017/S1431927620024605 |
Abstrakt: |
Electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) are used to extract crystallographic information from bulk samples, such as their crystal structure and orientation as well as the presence of any dislocation and grain boundary defects. These techniques rely on the backscattered electron signal, which has a large distribution in electron energy. Here, the influence of plasmon excitations on EBSD patterns and ECCI dislocation images is uncovered by multislice simulations including inelastic scattering. It is shown that the Kikuchi band contrast in an EBSD pattern for silicon is maximum at small energy loss (i.e., few plasmon scattering events following backscattering), consistent with previous energy-filtered EBSD measurements. On the other hand, plasmon excitation has very little effect on the ECCI image of a dislocation. These results are explained by examining the role of the characteristic plasmon scattering angle on the intrinsic contrast mechanisms in EBSD and ECCI. |
Databáze: |
MEDLINE |
Externí odkaz: |
|