Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals.

Autor: Migné CV; UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France.; UMR1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France., Moutailler S; UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France., Attoui H; UMR1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France.
Jazyk: angličtina
Zdroj: Pathogens (Basel, Switzerland) [Pathogens] 2020 Nov 05; Vol. 9 (11). Date of Electronic Publication: 2020 Nov 05.
DOI: 10.3390/pathogens9110915
Abstrakt: Animal arboviruses replicate in their invertebrate vectors and vertebrate hosts. They use several strategies to ensure replication/transmission. Their high mutation rates and propensity to generate recombinants and/or genome segment reassortments help them adapt to new hosts/emerge in new geographical areas. Studying arbovirus genetic variability has been used to identify indicators which predict their potential to adapt to new hosts and/or emergence and in particular quasi-species. Multiple studies conducted with insect-borne viruses laid the foundations for the "trade-off" hypothesis (alternation of host transmission cycle constrains arbovirus evolution). It was extrapolated to tick-borne viruses, where too few studies have been conducted, even though humans faced emergence of numerous tick-borne virus during the last decades. There is a paucity of information regarding genetic variability of these viruses. In addition, insects and ticks do not have similar lifecycles/lifestyles. Indeed, tick-borne viruses are longer associated with their vectors due to tick lifespan. The objectives of this review are: (i) to describe the state of the art for all strategies developed to study genetic variability of insect-borne viruses both in vitro and in vivo and potential applications to tick-borne viruses; and (ii) to highlight the specificities of arboviruses and vectors as a complex and diverse system.
Databáze: MEDLINE