Autor: |
Scherz MD; Zoologisches Institut, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany.; Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247, München, Germany.; Department of Evolutionary Biology, Universität Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany., Rasolonjatovo SM; Mention Zoologie et Biodiversité Animale, Université d'Antananarivo, BP 906, 101, Antananarivo, Madagascar.; Association Vahatra, Lot V A 38 LBA Ter Ambohidempona Tsiadana, BP 3972, 101, Antananarivo, Madagascar., Köhler J; Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283, Darmstadt, Germany., Rancilhac L; Zoologisches Institut, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany., Rakotoarison A; Mention Zoologie et Biodiversité Animale, Université d'Antananarivo, BP 906, 101, Antananarivo, Madagascar.; School for International Training, VN 41A Bis Ankazolava Ambohitsoa, 101, Antananarivo, Madagascar., Raselimanana AP; Mention Zoologie et Biodiversité Animale, Université d'Antananarivo, BP 906, 101, Antananarivo, Madagascar.; Association Vahatra, Lot V A 38 LBA Ter Ambohidempona Tsiadana, BP 3972, 101, Antananarivo, Madagascar., Ohler A; Museum National d'Histoire Naturelle, ISYEB, CNRS, SU, EPHE, UA, 57 Rue Cuvier, 75005, Paris, France., Preick M; Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany., Hofreiter M; Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany., Glaw F; Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247, München, Germany., Vences M; Zoologisches Institut, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106, Braunschweig, Germany. m.vences@tu-braunschweig.de. |
Abstrakt: |
Taxonomic progress is often hindered by intrinsic factors, such as morphologically cryptic species that require a broad suite of methods to distinguish, and extrinsic factors, such as uncertainties in the allocation of scientific names to species. These uncertainties can be due to a wide variety of factors, including old and poorly preserved type specimens (which contain only heavily degraded DNA or have lost important diagnostic characters), inappropriately chosen type specimens (e.g. juveniles without diagnostic characters) or poorly documented type specimens (with unprecise, incorrect, or missing locality data). Thanks to modern sequencing technologies it is now possible to overcome many such extrinsic factors by sequencing DNA from name-bearing type specimens of uncertain assignment and assigning these to known genetic lineages. Here, we apply this approach to frogs of the Mantidactylus ambreensis complex, which was recently shown to consist of two genetic lineages supported by concordant differentiation in mitochondrial and nuclear genes. These lineages co-occur on the Montagne d'Ambre Massif in northern Madagascar but appear to have diverged in allopatry. We use a recently published bait set based on three mitochondrial markers from all known Malagasy frog lineages to capture DNA sequences from the 127-year-old holotype of Mantidactylus ambreensis Mocquard, 1895. With the obtained sequences we are able to assign the name M. ambreensis to the lowland lineage, which is rather widespread in the rainforests of northern Madagascar, leaving the microendemic high-elevation lineage on Montagne d'Ambre in north Madagascar in need of description. We describe this species as Mantidactylus ambony sp. nov., differing from M. ambreensis in call parameters and a smaller body size. Thus, using target enrichment to obtain DNA sequence data from this old specimen, we were able to resolve the extrinsic (nomenclatural) hindrances to taxonomic resolution of this complex. We discuss the broad-scale versatility of this 'barcode fishing' approach, which can draw on the enormous success of global DNA barcoding initiatives to quickly and efficiently assign type specimens to lineages. |