The blockade of kappa opioid receptors exacerbates alveolar bone resorption in rats.

Autor: D'Ângelo MQ; Graduate Program in Dentistry, Pontifícia Universidade Católica de Minas Gerais (PUCMINAS), Pontifícia Universidade Católica de Minas Gerais (PUCMINAS), Rua Dom José Gaspar 500, Coração Eucarístico, Belo Horizonte, MG, Brazil., Queiroz-Junior CM; Translational Biology Laboratory, Morphology Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais (ICB-UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, Brazil., Maltos KLM; School of Dentistry, Universidade Federal de Minas Gerais (FOUFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, Brazil., Ferreira AJ; Translational Biology Laboratory, Morphology Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais (ICB-UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, Brazil., Pacheco CMDF; School of Dentistry, Centro Universitário Newton Paiva (CUNP), Brazil. Electronic address: cinthiapacheco@hotmail.com., Soares RV; Graduate Program in Dentistry, Pontifícia Universidade Católica de Minas Gerais (PUCMINAS), Pontifícia Universidade Católica de Minas Gerais (PUCMINAS), Rua Dom José Gaspar 500, Coração Eucarístico, Belo Horizonte, MG, Brazil.
Jazyk: angličtina
Zdroj: Archives of oral biology [Arch Oral Biol] 2020 Dec; Vol. 120, pp. 104923. Date of Electronic Publication: 2020 Oct 07.
DOI: 10.1016/j.archoralbio.2020.104923
Abstrakt: Objectives: Bone resorption associated to chronic diseases, such as arthritis and periodontitis, results from exacerbated immuno-inflammatory host response that leads to tissue breakdown. The significance of opioid pathways as endogenous modulators of inflammatory events has already been described. Thus, the aim of this work is to determine whether some of the main three opioid receptors are endogenously activated to prevent bone loss during experimentally-induced alveolar bone resorption.
Design: This study used an experimental model of alveolar bone resorption induced by ligature in rats. A silk thread was placed around the 2nd maxillary molar of male Wistar rats. In the 3rd, 4th and 5th day after ligation the rats received a local injection of different concentrations of opioid antagonists Cyprodime, Naltrindole, or Nor-binaltorphimine, which specifically block mü, delta and kappa opioid receptors, respectively. In the 7th experimental day, rats were euthanized and their maxillae collected for evaluation of alveolar bone and fiber attachment loss, morphometric counting of osteoclasts and osteoblasts, as well as the levels of cytokines IL-1β, IFN-γ, and IL-6 by ELISA.
Results: Selective antagonism of kappa opioid receptors, but not mü and delta, exacerbated alveolar bone resorption induced by ligature in rats. The increased bone loss associated with higher number of osteoclasts surrounding alveolar bone, although osteoblasts' counting remained unchanged. The concentrations of IL-1β and IL-6 in periodontal tissues were also significantly higher in the rats treated with the kappa antagonist.
Conclusion: Inhibiting kappa opioid receptors exacerbates alveolar bone resorption.
(Copyright © 2020 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE