Unsupervised Online Learning for Long-Term High Sensitivity Seizure Detection.

Autor: Chua A, Jordan MI, Muller R
Jazyk: angličtina
Zdroj: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2020 Jul; Vol. 2020, pp. 528-531.
DOI: 10.1109/EMBC44109.2020.9176122
Abstrakt: Current seizure detection systems rely on machine learning classifiers that are trained offline and subsequently require manual retraining to maintain high detection accuracy over long periods of time. For a true deploy-and-forget implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to the neural signal drifts over time. This work proposes SOUL: Stochastic-gradient-descent-based Online Unsupervised Logistic regression classifier, which provides continuous unsupervised online model updates that was initially trained with labels offline. SOUL was tested on two datasets, the CHB-MIT scalp EEG dataset, and a long (>250 hours) human ECoG dataset from the University of Melbourne. SOUL achieves an average cumulative sensitivity of 97.5% and 97.9% for the two datasets respectively, while maintaining <1.2 false alarms per day. When compared with state-of-the-art, a moderate sensitivity improvement of 1-3% is observed on the majority of subjects and a large sensitivity improvement of >12% is observed on three subjects with <1% impact on specificity.
Databáze: MEDLINE