Otoliths-composed gelatin/sodium alginate scaffolds for bone regeneration.

Autor: Valido DP; Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.; Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil., Júnior WDG; Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.; Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil., de Andrade ME; Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.; Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil., Rezende AA; Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.; Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil., de Andrade de Carvalho FM; Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.; Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil., de Lima R; Department of Biotechnology, University of Sorocaba, Rodovia Raposo Tavares S/N-km 92,5, Sorocaba, SP, CEP 18023-000, Brazil., das Graças Gomes Trindade G; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil., de Alcântara Campos C; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil., Oliveira AMS; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil., de Souza EPBSS; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil., Frank LA; Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga, 2759, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil., Guterres SS; Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga, 2759, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil., Sussuchi EM; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil., Matos CRS; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil., Polloni A; Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.; Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil., de Souza Araújo AA; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil., Padilha FF; Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.; Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil., Severino P; Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil. patricia_severino@itp.org.br.; Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil. patricia_severino@itp.org.br.; Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA, 02125, USA. patricia_severino@itp.org.br.; Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA. patricia_severino@itp.org.br., Souto EB; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal., de Albuquerque Júnior RLC; Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil. ricardo.patologia@uol.com.br.; Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil. ricardo.patologia@uol.com.br.
Jazyk: angličtina
Zdroj: Drug delivery and translational research [Drug Deliv Transl Res] 2020 Dec; Vol. 10 (6), pp. 1716-1728.
DOI: 10.1007/s13346-020-00845-x
Abstrakt: Evidence that otoliths, mineral-rich limestone concrescences present in the inner ear of bone fishes, can accelerate bone formation in vivo has been previously reported. The goal of this work was the development, characterization, and evaluation of the cytocompatibility of otoliths-incorporated sodium alginate and gelatin scaffolds. Cynoscion acoupa-derived otoliths were characterized by X-ray fluorescence spectrometry (FRX), particle size, free lime, and weight loss by calcination. Furthermore, otoliths were incorporated into sodium alginate (ALG/OTL-s) or gelatin (GEL/OTL-s) scaffolds, previously developed by freeze-drying. Then, the scaffolds were characterized by thermogravimetric analysis (TGA/DTG), differential scanning calorimetry (DSC), infrared spectroscopy with Fourier transform (FTIR), swelling tests, and scanning electron microscopy (SEM). Cytotoxicity assays were run against J774.G8 macrophages and MC3T3-E1 osteoblasts. Data obtained from TGA/DTG, DSC, and FTIR analyses confirmed the interaction between otoliths and the polymeric scaffolds. SEM showed the homogeneous porous 3D structure rich in otolith micro-fragments in both scaffolds. Swelling of the GEL/OTL-s (63.54 ± 3.0%) was greater than of ALG/OTL-s (13.36 ± 9.9%) (p < 0.001). The viability of J774.G8 macrophages treated with both scaffolds was statistically similar to the group treated with DMEM only (p > 0.05) and significantly higher than that treated with Triton-X (p < 0.01) at 72 h. Both scaffolds showed approximately 100% growth of MC3T3-E1 osteoblasts by 24 h, similarly to control (p > 0.05). However, by 48 h, only ALG/OTL-s showed growth similar to control (p > 0.05), whereas GEL/OTL showed a significantly lower growth index (p < 0.05). In conclusion, the physicochemical profiles suggest proper interaction between the otoliths and the two developed polymeric 3D scaffolds. Moreover, both materials showed cytocompatibility with J774.G8 macrophages but the growth of MC3T3-E1 osteoblasts was higher when exposed to ALG/OTL-s. These data suggest that sodium alginate/otoliths scaffolds are potential biomaterials to be used in bone regeneration applications. Graphical abstract.
Databáze: MEDLINE