Theoretical investigation of the H + HD → D + H 2 chemical reaction for astrophysical applications: A state-to-state quasi-classical study.

Autor: Bossion D; Laboratoire Univers et Particules de Montpellier, Université de Montpellier, UMR-CNRS 5299, 34095 Montpellier, France., Ndengué S; ICTP-East African Institute for Fundamental Research, University of Rwanda, Kigali, Rwanda., Meyer HD; Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany., Gatti F; Institut de Sciences Moleculaires d'Orsay, UMR-CNRS 8214, Université Paris-Saclay, 91405 Orsay, France., Scribano Y; Laboratoire Univers et Particules de Montpellier, Université de Montpellier, UMR-CNRS 5299, 34095 Montpellier, France.
Jazyk: angličtina
Zdroj: The Journal of chemical physics [J Chem Phys] 2020 Aug 28; Vol. 153 (8), pp. 081102.
DOI: 10.1063/5.0017697
Abstrakt: We report a large set of state-to-state rate constants for the H + HD reactive collision, using Quasi-Classical Trajectory (QCT) simulations on the accurate H 3 global potential energy surface of Mielke et al. [J. Chem. Phys. 116, 4142 (2002)]. High relative collision energies (up to ≈56 000 K) and high rovibrational levels of HD (up to ≈50 000 K), relevant to various non thermal equilibrium astrophysical media, are considered. We have validated the accuracy of our QCT calculations with a new efficient adaptation of the Multi Configuration Time Dependent Hartree (MCTDH) method to compute the reaction probability of a specific reactive channel. Our study has revealed that the high temperature regime favors the production of H 2 in its highly rovibrationnally excited states, which can de-excite radiatively (cooling the gas) or collisionally (heating the gas). Those new state-to-state QCT reaction rate constants represent a significant improvement in our understanding of the possible mechanisms leading to the destruction of HD by its collision with a H atom.
Databáze: MEDLINE