Autor: |
Durnaoglu S; Department of Life Science, and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea., Kim HS; Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea., Ahnn J; Department of Life Science, and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea., Lee SK; Department of Life Science, and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea. |
Abstrakt: |
Endogenous retroviruses (ERVs) are retrotransposons present in various metazoan genomes and have been implicated in metazoan evolution as well as in nematodes and humans. The long terminal repeat (LTR) retrotransposons contain several regulatory sequences including promoters and enhancers that regulate endogenous gene expression and thereby control organismal development and response to environmental change. ERVs including the LTR retrotransposons constitute 8% of the human genome and less than 0.6% of the Caenorhabditis elegans (C. elegans) genome, a nematode genetic model system. To investigate the evolutionarily conserved mechanism behind the transcriptional activity of retrotransposons, we generated a transgenic worm model driving green fluorescent protein (GFP) expression using Human endogenous retroviruses (HERV)-K LTR as a promoter. The promoter activity of HERV-K LTR was robust and fluorescence was observed in various tissues throughout the developmental process. Interestingly, persistent GFP expression was specifically detected in the adult vulva muscle. Using deletion constructs, we found that the region from positions 675 to 868 containing the TATA box was necessary for promoter activity driving gene expression in the vulva. Interestingly, we found that the promoter activity of the LTR was dependent on che-1 transcription factor, a sensory neuron driver, and lin-15b, a negative regulator of RNAi and germline gene expression. These results suggest evolutionary conservation of the LTR retrotransposon activity in transcriptional regulation as well as the possibility of che-1 function in non-neuronal tissues. [BMB Reports 2020; 53(10): 521-526]. |