Shape Memory Polymer Foam with Programmable Apertures.

Autor: Walter M; Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany., Friess F; Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany., Krus M; Fraunhofer Institute for Building Physics IBP, Fraunhoferstraße 10, 83626 Valley, Germany., Zolanvari SMH; Fraunhofer Institute for Building Physics IBP, Fraunhoferstraße 10, 83626 Valley, Germany., Grün G; Fraunhofer Institute for Building Physics IBP, Fraunhoferstraße 10, 83626 Valley, Germany., Kröber H; Fraunhofer Institute for Chemical Technology ICT, Joseph-von-Fraunhofer-Straße 7, 76327 Pfinztal, Germany., Pretsch T; Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany.
Jazyk: angličtina
Zdroj: Polymers [Polymers (Basel)] 2020 Aug 25; Vol. 12 (9). Date of Electronic Publication: 2020 Aug 25.
DOI: 10.3390/polym12091914
Abstrakt: In this work, a novel type of polyester urethane urea (PEUU) foam is introduced. The foam was produced by reactive foaming using a mixture of poly(1,10-decamethylene adipate) diol and poly(1,4-butylene adipate) diol, 4,4'-diphenylmethane diisocyanate, 1,4-butanediol, diethanolamine and water as blowing agent. As determined by differential scanning calorimetry, the melting of the ester-based phases occurred at temperatures in between 25 °C and 61 °C, while the crystallization transition spread from 48 °C to 20 °C. The mechanical properties of the foam were simulated with the hyperplastic models Neo-Hookean and Ogden, whereby the latter showed a better agreement with the experimental data as evidenced by a Pearson correlation coefficient R² above 0.99. Once thermomechanically treated, the foam exhibited a maximum actuation of 13.7% in heating-cooling cycles under a constant external load. In turn, thermal cycling under load-free conditions resulted in an actuation of more than 10%. Good thermal insulation properties were demonstrated by thermal conductivities of 0.039 W·(m·K) -1 in the pristine state and 0.052 W·(m·K) -1 in a state after compression by 50%, respectively. Finally, three demonstrators were developed, which closed an aperture or opened it again simply by changing the temperature. The self-sufficient material behavior is particularly promising in the construction industry, where programmable air slots offer the prospect of a dynamic insulation system for an adaptive building envelope.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje