Testing the efficacy of lionfish traps in the northern Gulf of Mexico.
Autor: | Harris HE; School of Natural Resources and Environment, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, Florida, United States of America.; Department of Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, Florida, United States of America., Fogg AQ; Okaloosa County Board of County Commissioners, Destin-Fort Walton Beach, Florida, United States of America., Gittings SR; Office of National Marine Sanctuaries, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America., Ahrens RNM; Department of Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, Florida, United States of America., Allen MS; Department of Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, Florida, United States of America.; Nature Coast Biological Station, Institute of Food and Agriculture Sciences, University of Florida, Cedar Key, Florida, United States of America., Patterson Iii WF; Department of Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, Florida, United States of America. |
---|---|
Jazyk: | angličtina |
Zdroj: | PloS one [PLoS One] 2020 Aug 26; Vol. 15 (8), pp. e0230985. Date of Electronic Publication: 2020 Aug 26 (Print Publication: 2020). |
DOI: | 10.1371/journal.pone.0230985 |
Abstrakt: | Spearfishing is currently the primary approach for removing invasive lionfish (Pterois volitans/miles) to mitigate their impacts on western Atlantic marine ecosystems, but a substantial portion of lionfish spawning biomass is beyond the depth limits of SCUBA divers. Innovative technologies may offer a means to target deepwater populations and allow for the development of a lionfish trap fishery, but the removal efficiency and potential environmental impacts of lionfish traps have not been evaluated. We tested a collapsible, non-containment trap (the 'Gittings trap') near artificial reefs in the northern Gulf of Mexico. A total of 327 lionfish and 28 native fish (four were species protected with regulations) recruited (i.e., were observed within the trap footprint at the time of retrieval) to traps during 82 trap sets, catching 144 lionfish and 29 native fish (one more than recruited, indicating detection error). Lionfish recruitment was highest for single (versus paired) traps deployed <15 m from reefs with a 1-day soak time, for which mean lionfish and native fish recruitment per trap were approximately 5 and 0.1, respectively. Lionfish from traps were an average of 19 mm or 62 grams larger than those caught spearfishing. Community impacts from Gittings traps appeared minimal given that recruitment rates were >10X higher for lionfish than native fishes and that traps did not move on the bottom during two major storm events, although further testing will be necessary to test trap movement with surface floats. Additional research should also focus on design and operational modifications to improve Gittings trap deployment success (68% successfully opened on the seabed) and reduce lionfish escapement (56% escaped from traps upon retrieval). While removal efficiency for lionfish demonstrated by traps (12-24%) was far below that of spearfishing, Gittings traps appear suitable for future development and testing on deepwater natural reefs, which constitute >90% of the region's reef habitat. Competing Interests: The authors have declared that no competing interests exist. |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |