IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies.
Autor: | Ahmad A; University of Manchester, United Kingdom. Electronic address: amais.ahmed@manchester.ac.uk., Pepin X; AstraZeneca, United Kingdom., Aarons L; University of Manchester, United Kingdom., Wang Y; University of Manchester, United Kingdom., Darwich AS; Royal Institute of Technology, Stockholm, Sweden., Wood JM; AstraZeneca, United Kingdom., Tannergren C; AstraZeneca, United Kingdom., Karlsson E; AstraZeneca, United Kingdom., Patterson C; AstraZeneca, United Kingdom., Thörn H; AstraZeneca, United Kingdom., Ruston L; AstraZeneca, United Kingdom., Mattinson A; AstraZeneca, United Kingdom., Carlert S; AstraZeneca, United Kingdom., Berg S; AstraZeneca, United Kingdom., Murphy D; AstraZeneca, United Kingdom., Engman H; AstraZeneca, United Kingdom., Laru J; AstraZeneca, United Kingdom., Barker R; AstraZeneca, United Kingdom., Flanagan T; AstraZeneca, United Kingdom., Abrahamsson B; AstraZeneca, United Kingdom., Budhdeo S; AstraZeneca, United Kingdom., Franek F; AstraZeneca, United Kingdom., Moir A; AstraZeneca, United Kingdom., Hanisch G; AstraZeneca, United Kingdom., Pathak SM; Certara, Simcyp Division, United Kingdom., Turner D; Certara, Simcyp Division, United Kingdom., Jamei M; Certara, Simcyp Division, United Kingdom., Brown J; Bristol-Myers Squibb, United Kingdom., Good D; Bristol-Myers Squibb, United Kingdom., Vaidhyanathan S; Bristol-Myers Squibb, United Kingdom., Jackson C; Bristol-Myers Squibb, United Kingdom., Nicolas O; Sanofi, United States., Beilles S; Sanofi, United States., Nguefack JF; Sanofi, United States., Louit G; Sanofi, United States., Henrion L; Sanofi, United States., Ollier C; Sanofi, United States., Boulu L; Sanofi, United States., Xu C; Sanofi, United States., Heimbach T; Novartis, United States., Ren X; Novartis, United States., Lin W; Novartis, United States., Nguyen-Trung AT; Novartis, United States., Zhang J; Novartis, United States., He H; Novartis, United States., Wu F; Novartis, United States., Bolger MB; Simulation Plus, Inc., United States., Mullin JM; Simulation Plus, Inc., United States., van Osdol B; Simulation Plus, Inc., United States., Szeto K; Simulation Plus, Inc., United States., Korjamo T; Orion Pharma, Finland., Pappinen S; Orion Pharma, Finland., Tuunainen J; Orion Pharma, Finland., Zhu W; Merck Research Laboratories, Merck & Co., United States., Xia B; Merck Research Laboratories, Merck & Co., United States., Daublain P; Merck Research Laboratories, Merck & Co., United States., Wong S; Pfizer, United States., Varma MVS; Pfizer, United States., Modi S; Pfizer, United States., Schäfer KJ; Boehringer-ingelheim, Germany., Schmid K; Boehringer-ingelheim, Germany., Lloyd R; GlaxoSmithKline, United Kingdom., Patel A; GlaxoSmithKline, United Kingdom., Tistaert C; Janssen, Belgium., Bevernage J; Janssen, Belgium., Nguyen MA; Johannes Gutenberg University of Mainz, Germany., Lindley D; AbbVie, Germany., Carr R; AbbVie, Germany., Rostami-Hodjegan A; University of Manchester, United Kingdom; Certara, Simcyp Division, United Kingdom. |
---|---|
Jazyk: | angličtina |
Zdroj: | European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V [Eur J Pharm Biopharm] 2020 Nov; Vol. 156, pp. 50-63. Date of Electronic Publication: 2020 Aug 14. |
DOI: | 10.1016/j.ejpb.2020.08.006 |
Abstrakt: | Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption is much needed. Current status of predictive performance, within the confinement of commonly available in vitro data on drugs and formulations alongside systems information, were tested using 3 PBPK software packages (GI-Sim (ver.4.1), Simcyp® Simulator (ver.15.0.86.0), and GastroPlus™ (ver.9.0.00xx)). This was part of the Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project. Fifty eight active pharmaceutical ingredients (APIs) were qualified from the OrBiTo database to be part of the investigation based on a priori set criteria on availability of minimum necessary information to allow modelling exercise. The set entailed over 200 human clinical studies with over 700 study arms. These were simulated using input parameters which had been harmonised by a panel of experts across different software packages prior to conduct of any simulation. Overall prediction performance and software packages comparison were evaluated based on performance indicators (Fold error (FE), Average fold error (AFE) and absolute average fold error (AAFE)) of pharmacokinetic (PK) parameters. On average, PK parameters (Area Under the Concentration-time curve (AUC (Copyright © 2020 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |