In Vivo NADH/NAD + Biosensing Reveals the Dynamics of Cytosolic Redox Metabolism in Plants.

Autor: Steinbeck J; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany., Fuchs P; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany.; Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany., Negroni YL; Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany.; Department of Biology, University of Padova, 35131 Padova, Italy., Elsässer M; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany.; Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany.; Institute for Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany., Lichtenauer S; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany., Stockdreher Y; Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany., Feitosa-Araujo E; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany.; Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil., Kroll JB; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany., Niemeier JO; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany., Humberg C; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany., Smith EN; Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom., Mai M; Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, D-66123 Saarbrücken, Germany., Nunes-Nesi A; Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil., Meyer AJ; Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany., Zottini M; Department of Biology, University of Padova, 35131 Padova, Italy., Morgan B; Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, D-66123 Saarbrücken, Germany., Wagner S; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany.; Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany., Schwarzländer M; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany markus.schwarzlander@uni-muenster.de.
Jazyk: angličtina
Zdroj: The Plant cell [Plant Cell] 2020 Oct; Vol. 32 (10), pp. 3324-3345. Date of Electronic Publication: 2020 Aug 13.
DOI: 10.1105/tpc.20.00241
Abstrakt: NADH and NAD + are a ubiquitous cellular redox couple. Although the central role of NAD in plant metabolism and its regulatory role have been investigated extensively at the biochemical level, analyzing the subcellular redox dynamics of NAD in living plant tissues has been challenging. Here, we established live monitoring of NADH/NAD + in plants using the genetically encoded fluorescent biosensor Peredox-mCherry. We established Peredox-mCherry lines of Arabidopsis ( Arabidopsis thaliana ) and validated the biophysical and biochemical properties of the sensor that are critical for in planta measurements, including specificity, pH stability, and reversibility. We generated an NAD redox atlas of the cytosol of living Arabidopsis seedlings that revealed pronounced differences in NAD redox status between different organs and tissues. Manipulating the metabolic status through dark-to-light transitions, respiratory inhibition, sugar supplementation, and elicitor exposure revealed a remarkable degree of plasticity of the cytosolic NAD redox status and demonstrated metabolic redox coupling between cell compartments in leaves. Finally, we used protein engineering to generate a sensor variant that expands the resolvable NAD redox range. In summary, we established a technique for in planta NAD redox monitoring to deliver important insight into the in vivo dynamics of plant cytosolic redox metabolism.
(© 2020 American Society of Plant Biologists. All rights reserved.)
Databáze: MEDLINE